首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine capillary endothelial (BCE) cells were incubated at 4 degrees C with 5 ng/ml 125I-basic fibroblast growth factor (bFGF) to equilibrate 125I-bFGF with high affinity cell surface receptors and low affinity matrix binding sites. 67% of the added 125I-bFGF bound to the matrix and 7% bound to receptors. The fate of bound bFGF was followed after cells were incubated in bFGF-free medium and were shifted to 37 degrees C to restore cell metabolism. 125I-bFGF bound to receptors decreased rapidly while the amount of 125I-bFGF bound to matrix was reduced more slowly. The rapid decrease in receptor-bound 125I-bFGF appeared to be due to a down-regulation of bFGF receptors; cells that had been treated for 5 h with bFGF had 60% fewer high affinity receptors than untreated cells. Despite the initial high level of 125I-bFGF binding to matrix, most of this 125I-bFGF was mobilized and metabolized by the cells. 125I-bFGF was internalized by the cells at 37 degrees C, leading to a constant accumulation of 125I-bFGF within the cell. Internalized bFGF was rapidly cleaved from an 18-kD form to a 16-kD form. The 16-kD form was more slowly degraded with a half-life of approximately 8 h. Degradation of internalized 125I-bFGF was inhibited by chloroquine, suggesting that the digestion occurred in a lysosomal compartment. The role of matrix binding sites in the internalization process was investigated. Binding to matrix sites seemed not to be directly involved in the internalization process, since addition of heparin at a concentration that blocked 95% of the binding to matrix had no effect on the initial rate of internalization of bFGF. BCE cells also released a substance that competed for the binding of bFGF to matrix but not to receptors. This substance bound to DEAE-cellulose and was sensitive to heparinase treatment, suggesting that it was a heparinlike molecule. Thus, heparinlike molecules produced by BCE cells can modulate the cellular interaction with bFGF. Matrix-associated heparinlike molecules bind bFGF which can later be metabolized by the cell, and secreted heparinlike molecules release bFGF from matrices.  相似文献   

2.
The levels of endogenous basic fibroblast growth factor (bFGF) in seven clones of cultured bovine capillary endothelial (BCE) cells were assayed, and their relation to cell morphology, bFGF receptor number, cell migration, amniotic membrane invasivity, and proteinase levels were studied. Immunoblotting experiments with anti-bFGF IgG demonstrated that cells from these clones contained different amounts of bFGF. The cells containing high levels of bFGF had a spindle or elongated appearance at confluence and a low number of high affinity receptors for bFGF. The cells containing low levels of bFGF had a cobblestone-like appearance and a higher number of high affinity receptors. When exposed to 10 ng/ml bFGF, cells containing a low level of bFGF took on an elongated appearance with a crisscross pattern similar to that seen with the high producer bFGF cells. The endogenous bFGF levels of the BCE cell clones correlated with the extent of cell migration after wounding of a monolayer and the degree of invasion of the human amniotic membrane. Cells from the clone with the highest endogenous bFGF level migrated well, invaded the amnion membrane without the addition of exogenous bFGF, and were relatively unaffected by the addition of bFGF. Cells from the clone containing the lowest level of bFGF did not migrate or invade under normal conditions. However, the addition of bFGF to the culture medium strongly enhanced both of these processes. The inclusion of anti-bFGF IgG in the media suppressed cell migration and invasion. The plasminogen activator (PA) activities of cell lysates of the clones, assayed by the 125I-fibrin plate technique, indicated that the PA levels did not correlate with the bFGF levels. Metalloproteinase activities in the conditioned medium, assayed by gelatin zymography, correlated with the endogenous bFGF levels, suggesting that the degree of expression of metalloproteinases might be critical for cell migration and invasion. These data suggest that endogenous bFGF may have an important role for migration and invasion of BCE cells during neovascularization via the induction and/or activation of specific metalloproteinases.  相似文献   

3.
Cultured bovine capillary endothelial (BCE) cells were found to synthesize and secrete high molecular mass heparan sulfate proteoglycans and glycosaminoglycans, which bound basic fibroblast growth factor (bFGF). The secreted heparan sulfate molecules were purified by DEAE cellulose chromatography, followed by Sepharose 4B chromatography and affinity chromatography on immobilized bFGF. Most of the heparinase-sensitive sulfated molecules secreted into the medium by BCE cells bound to immobilized bFGF at low salt concentrations. However, elution from bFGF with increasing salt concentrations demonstrated varying affinities for bFGF among the secreted heparan sulfate molecules, with part of the heparan sulfate requiring NaCl concentrations between 1.0 and 1.5 M for elution. Cell extracts prepared from BCE cells also contained a bFGF-binding heparan sulfate proteoglycan, which could be released from the intact cells by a short proteinase treatment. The purified bFGF-binding heparan sulfate competed with 125I-bFGF for binding to low-affinity binding sites but not to high-affinity sites on the cells. Heparan sulfate did not interfere with bFGF stimulation of plasminogen activator activity in BCE cells in agreement with its lack of effect on binding of 125I-bFGF to high-affinity sites. Soluble bFGF was readily degraded by plasmin, whereas bFGF bound to heparan sulfate was protected from proteolytic degradation. Treatment of the heparan sulfate with heparinase before addition of plasmin abolished the protection and resulted in degradation of bFGF by the added proteinase. The results suggest that heparan sulfate released either directly by cells or through proteolytic degradation of their extracellular milieu may act as carrier for bFGF and facilitate the diffusion of locally produced growth factor by competing with its binding to surrounding matrix structures. Simultaneously, the secreted heparan sulfate glycosaminoglycans protect the growth factor from proteolytic degradation by extracellular proteinases, which are abundant at sites of neovascularization or cell invasion.  相似文献   

4.
Cultured bovine capillary endothelial (BCE) cells synthesize heparan sulfate proteoglycans (HSPG), which are both secreted into the culture medium and deposited in the cell layer. The nonsoluble HSPGs can be isolated as two predominant species: a larger 800-kD HSPG, which is recovered from preparations of extracellular matrix, and a 250-kD HSPG, which is solubilized by nonionic detergent extraction of the cells. Both HSPG species bind bFGF. 125I-bFGF bound to BCE cell cultures is readily released by either heparinase or plasmin. When released by plasmin, the growth factor is recovered from the incubation medium as a complex with the partly degraded high molecular mass HSPG. Endogenous bFGF activity is released by a proteolytic treatment of cultured BCE cells. The bFGF-binding HSPGs are also released when cultures are incubated with the inactive proenzyme plasminogen. Under such experimental conditions, the release of the extracellular proteoglycans can be enhanced by treating the cells either with bFGF, which increases the plasminogen activating activity expressed by the cells, or decreased by treating the cells with transforming growth factor beta, which decreases the plasminogen activating activity of the cells. Specific immune antibodies raised against bovine urokinase also block the release of HSPG from BCE cell cultures. We propose that this plasminogen activator-mediated proteolysis provides a mechanism for the release of biologically active bFGF-HSPG complexes from the extracellular matrix and that bFGF release can be regulated by the balance between factors affecting the pericellular proteolytic activity.  相似文献   

5.
Basic fibroblast growth factor (bFGF) is a potent endothelial cell mitogen whose actions are mediated by binding to specific cell surface receptors on a variety of cell types. However, the amino acid sequence of bFGF does not contain a classical signal peptide sequence and the extent to which cellular stores of this mitogen are released is still a matter of some controversy. In the present study we examined the release of immunoreactive bFGF into serum-free conditioned medium of bovine corneal endothelial cells (BCE) and a human astrocytoma cell line, U87-MG. Western blotting analysis of BCE conditioned medium using N-terminal specific anti-bFGF serum revealed a single immunoreactive band of 32 kilodaltons, which was reduced to 18 kilodaltons in the presence of 8 M urea. Using a sensitive two-site immunoradiometric assay we were able to quantify the release of immunoreactive bFGF into the culture medium by BCE cells and by the human astrocytoma cell line U87-MG. In each case the release of bFGF was cell density dependent, but under all conditions the level of bFGF released was significantly greater in the transformed astrocytoma line, ranging from 15- to 50-fold higher than in the BCE cultures under various conditions. At 30% confluence the concentration of immunoreactive bFGF in the medium was maintained at a constant level for up to 24 h. However, the level of immunoreactive bFGF declined rapidly in confluent cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Transforming growth factor beta-1 (TGF beta-1), known as an inhibitor of vascular endothelial cell proliferation in vitro, stimulates bovine corneal endothelial cells (BCE) proliferation. It also positively modulates the response of BCE cells to fibroblast growth factor (FGF) and epidermal growth factor (EGF). This effect is concentration dependent within a physiological range of TGF beta-1, but it is blocked if cells are cultured on extracellular-matrix-coated dishes instead of plastic. TGF beta-1 does not modify the number or the affinity of bFGF receptors on BCE cell surface but increases the bFGF content of these cells. This suggests that TGF beta-1 might act through regulation of bFGF synthesis in BCE cells.  相似文献   

7.
Recently, a novel class of angiostatic steroids which block angiogenesis in several systems has been described. Since the elaboration of proteases is believed to be an important component of angiogenesis, we tested whether these steroids blocked the fibrinolytic response of endothelial cells to the angiogenic protein, basic fibroblast growth factor [bFGF]). Cultured bovine aortic endothelial (BAE) cells were incubated with bFGF and/or medroxyprogesterone acetate (MPA), an angio-static steroid which has been shown to inhibit vascularization, collagenolysis, and tumor growth. When bFGF (3 ng/ml) was added to confluent monolayers of BAE cells, plasminogen activator (PA) activity in the medium was increased threefold. In contrast, MPA at 10?6 M, 10?7 M, 10?8 M, and 10?9 M decreased PA levels in the medium by 83%, 83%, 75%, and 39%, respectively. The stimulation of PA levels in BAE cells by bFGF (3 ng/ml) was abrogated by the presence of 10?6 M MPA. This decrease in PA activity was found to be mediated by a significant increase in plasminogen activator inhibitor type-1 (PAI-1) production. MPA, therefore, negated one of the important enzymatic activities associated with the angiogenic process. In contrast to the decreased levels of secreted PA in cultures exposed simultaneously to MPA and bFGF, cell-associated PA levels remained high, consistent with earlier observations indicating that PAI-1 does not inhibit cell-associated PA. Thus, angiostatic steroids may exert their inhibitory effects on angiogenesis by increasing the synthesis of PAI-1. This, in turn, inhibits PA activity and, therefore, plasmin generation, which is essential for the invasive aspect of angiogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

8.
There is increasing evidence that extracellular matrix (ECM)-degrading proteinases contribute to the process of medial hypertrophy and neointimal proliferation in pulmonary vascular diseases. However, little is known about how proteinases, specifically elastases, induce vascular smooth muscle cell (SMC) hyperplasia. Our objective was to determine whether exogenous human leukocyte elastase (HLE), as well as endogenous vascular elastase, could release basic fibroblast growth factor (bFGF), a potent mitogen stored in the ECM surrounding SMCs. Cultured ovine and porcine pulmonary artery SMC were pre-incubated with [125I]-bFGF. After removal of unbound [125I]-bFGF, administration of HLE (0–1.0 μg/ml, 1 h) resulted in a concentration-dependent accumulation of [125I]-bFGF in the conditioned medium, mirrored by depletion from the ECM. The serine elastase inhibitor elafin blocked this HLE-mediated action. Assessment by Western immunoblotting further demonstrated that HLE evoked the release of ECM-bound endogenous bFGF. When incubated with serum-starved SMC, conditioned medium from HLE-treated cells stimulated [3H]-thymidine incorporation, a feature neutralized by bFGF antibodies. In addition, SMC exposed to serum treated elastin (STE), previously shown to stimulate endogenous vascular elastase, liberated bioavailable bFGF from ECM stores, as determined by autoradiography, Western immunoblotting, and stimulation of DNA synthesis and SMC proliferation. Chondroitin sulfate, an inhibitor of STE-induced elastase activity, attenuated the release of bFGF. Our studies demonstrate that HLE, secreted by inflammatory cells, and endogenous vascular elastase release matrix-bound bFGF, suggesting a mechanism whereby elastases, through degradation of ECM, induce SMC proliferation associated with progressive vascular disease. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Extracellular proteolysis is believed to be an essential component of the angiogenic process. The effects of VEGF, a recently described angiogenic factor, were assessed on PA activity and PA and PAI-1 mRNA levels in microvascular endothelial cells. u-PA and t-PA activity were increased by VEGF in a dose-dependent manner, with maximal induction at 30 ng/ml. u-PA and t-PA mRNAs were increased 7.5- and 8-fold respectively after 15 hours, and PAI-1 mRNA 4.5-fold after 4 hours exposure to VEGF. At equimolar concentrations (0.5 nM), VEGF was a more potent inducer of t-PA mRNA than bFGF, while bFGF was a more potent inducer of u-PA and PAI-1 mRNAs. In addition, VEGF induced u-PA and PAI-1 mRNAs with kinetics similar to those previously demonstrated for bFGF. These results demonstrate the regulation of PA and PAI-1 production by VEGF in microvascular endothelial cells and are in accord with the hypothesis that extracellular proteolysis, appropriately balanced by protease inhibitors, is required for normal capillary morphogenesis.  相似文献   

10.
When bovine capillary endothelial (BCE) cells plated on type I collagen gel were covered with a second layer of collage gel, BCE cells reorganized into a network of capillary-like structures. In the presence of affinity purified anti-basic fibroblast growth factor (bFGF) antibody, this reorganization was inhibited. By using a computerized image analyzer, the formation of network structures and the effect of anti-bFGF antibody was quantitated. The inhibitory effect of anti-FGF antibody was dose-dependent and maximal inhibition was observed at 2.0 micrograms/ml of antibody. Exogenously added bFGF potentiated network formation of BCE cells and coadministration of bFGF abrogated the inhibitory effect of anti-bFGF antibody. Platelet factor 4, which blocks the binding of bFGF to its receptor, inhibited network formation. These results indicate that bFGF produced by endothelial cells regulates angiogenesis as an autocrine factor.  相似文献   

11.
The cell extracts and conditioned medium from cultured bovine capillary endothelial (BCE) cells were examined to determine the types of plasminogen activator (PA) present in each of these two fractions. The fractions were first analyzed by fibrin autography after sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The cell extracts contained two species of PA of Mr 48,000 and 28,000. Multiple forms of PA were detected in the conditioned medium: variable amounts of the Mr 48,000 and 28,000 forms and a broad band of activity with Mr in the range of 67,000-93,000. The major fraction of the Mr 48,000 form was in the cell extract. Treatment of the cells with 12-0-tetradecanoyl phorbol-13-acetate or with a preparation containing angiogenic activity resulted in a proportionate increase in the levels of all forms. The Mr 48,000 form was demonstrated to be a urokinase-like PA, since it was immunoprecipitated with antibodies to urokinase. When conditioned medium or cell extracts from biosynthetically labelled BCE cells were incubated with antiserum to urokinase, the Mr 48,000 form was immunoprecipitated only from the cell extract. The Mr 67,000-93,000 forms were demonstrated to be tissue-type PAs, since they were immunoprecipitated with antibodies to tissue PA. When the same conditioned medium or cell extracts were incubated with antiserum to tissue-type PA, the Mr 67,000-93,000 forms were immunoprecipitated only from the conditioned medium. Therefore, BCE cells are able to produce both tissue-type PA, which is primarily secreted, and urokinase-type PA, which remains primarily cell associated.  相似文献   

12.
The growth of capillary endothelial cells (BCE) is an important regulatory step in the formation of capillary blood vessels. In vivo, the proliferation of these cells is stringently controlled. In vitro they can be stimulated by polypeptide growth factors, such as acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF). Since bFGF is synthesized and stored by vascular endothelial cells, this mitogen may play an important role in an autocrine growth regulation during angiogenesis. Here, evidence is presented for induction of the mRNA of bFGF by bFGF itself. A similar increase of bFGF mRNA was observed in response to thrombin and after treatment with phorbol ester. These results suggest that an autocrine loop may exist that may serve to modulate the mitogenic response in BCE under various physiological conditions, (e.g., wound healing and new capillary formation).  相似文献   

13.
Subconfluent bovine pulmonary artery endothelial cells on rigid substrates were exposed to 1.5–15 cm H2O sustained hydrostatic pressure for up to 7 days and exhibited elongation, cytoskeletal rearrangement, increased cell proliferation, and bilayering. The role of basic fibroblast growth factor (bFGF) in the mechanism(s) of these endothelial cell responses to sustained hydrostatic pressure was investigated. Evidence that bFGF was released from endothelial cells exposed to sustained hydrostatic pressure or compression was provided by the following experimental results: (1) Cells exposed to control (3 mm H2O) pressure displayed intense nuclear and cytoplasmic bFGF staining by immunocytochemical techniques; this staining was absent in cells exposed to 10 cm H2O for 7 days. (2) Conditioned medium from endothelial cells exposed to 10 cm H2O for 7 days contained at ansferable, growth-promoting activity exhibiting heparin-Sepharose affinity, lability to both heat and freeze/thawing, and neutralization by anti-bovine bFGF. (3) Suramin (0.1 mM), a growth-factor receptor inhibitor, abrogated the proliferative and morphological responses of endothelial cells exposed to sustained hydrostatic pressure. Endothelial cells exposed to elevated hydrostatic pressure demonstrated no detectable decrement in cell viability as assessed by Trypan blue exclusion. The results of the present study indicate that hydrostatic pressure or compression can induce bFGF release from endothelial cells independent of cell injury or death; bFGF is subsequently responsible for the morphological, proliferative, and bilayering responses of endothelial cells to hydrostatic pressure. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Nanofibrous matrices are attractive scaffolding platforms for tissue regeneration. Modification of the nanofiber surface, particularly with biological proteins, improves cellular interactions. Here, we loaded basic fibroblast growth factor (bFGF) onto mineralized nanofibers and investigated the effect on adhesion and proliferation of rat mesenchymal stem cells. bFGF loading was significantly higher on the mineralized nanofiber than on the non-mineralized one. Release of bFGF from the mineralized nanofibers was continuous over 2 weeks. Cells cultured on the bFGF-loaded nanofiber attached and proliferated in significantly higher numbers than those on the bFGF-free nanofiber. bFGF-receptor inhibition study confirmed the biological role played by the loaded bFGF. This study details the advantages of the mineralized nanofiber surface for the loading and delivery bFGF, and thus the bFGF-loaded nanofiber scaffold may be useful for tissue repair and regeneration.  相似文献   

15.
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Vascular endothelial growth factor-C (VEGF-C) is a recently characterized member of the VEGF family of angiogenic polypeptides. We demonstrate here that VEGF-C is angiogenic in vitro when added to bovine aortic or lymphatic endothelial (BAE and BLE) cells but has little or no effect on bovine microvascular endothelial (BME) cells. As reported previously for VEGF, VEGF-C and basic fibroblast growth factor (bFGF) induced a synergistic in vitro angiogenic response in all three cells lines. Unexpectedly, VEGF and VEGF-C also synergized in the in vitro angiogenic response when assessed on BAE cells. Characterization of VEGF receptor (VEGFR) expression revealed that BME, BAE, and BLE cell lines express VEGFR-1 and -2, whereas of the three cell lines assessed, only BAE cells express VEGFR-3. We also demonstrate that VEGF-C increases plasminogen activator (PA) activity in the three bovine endothelial cell lines and that this is accompanied by a concomitant increase in PA inhibitor-1. Addition of α2-antiplasmin to BME cells co-treated with bFGF and VEGF-C partially inhibited collagen gel invasion. These results demonstrate, first, that by acting in concert with bFGF or VEGF, VEGF-C has a potent synergistic effect on the induction of angiogenesis in vitro and, second, that like VEGF and bFGF, VEGF-C is capable of altering endothelial cell extracellular proteolytic activity. These observations also highlight the notion of context, i.e., that the activity of an angiogenesis-regulating cytokine depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell. J. Cell. Physiol. 177:439–452, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Scatchard analysis of binding of 125I-basic fibroblast growth factor (FGF) to baby hamster kidney (BHK) cells revealed the presence of two binding sites: a high affinity site with KD of 20 pM and 80,000 sites per cell and a low affinity site with KD of about 2 nM and 600,000 sites per cell. The binding to the two sites could be separated by first washing the cells with 2 M NaCl at pH 7.5 which released the low affinity binding and then extracting the cells with 0.5% Triton X-100 to recover the 125I-basic FGF bound to high affinity sites. The binding to the high affinity site was acid sensitive, suggesting that it represented binding to the receptor. Binding to the low affinity site could be competed strongly by heparin and less strongly by heparan sulfate but not by chondroitin sulfate, dermatan sulfate, or keratan sulfate. Treatment of BHK cells with heparinase abolished 62% of the low affinity binding, suggesting that the low affinity binding represented binding to cell-associated, heparin-like molecules. A variety of other cell types, including bovine capillary endothelial (BCE) cells, also demonstrated both low and high affinity binding sites. To test whether the low affinity binding might play a role in the basic FGF stimulation of plasminogen activator (PA) production by BCE cells, heparin was added to BCE cultures at concentrations which totally blocked binding of 125I-basic FGF to the low affinity sites. Addition of the heparin did not diminish the increased PA production induced by basic FGF. This suggests that the low affinity binding has no direct role in the stimulation of PA production in BCE cells.  相似文献   

18.
Both normal and tumor cells produce basic fibroblast growth factor   总被引:30,自引:0,他引:30  
We have previously purified from human placenta a basic fibroblast growth factor (FGF)-like molecule which stimulates the production of plasminogen activator (PA) and collagenase, induces DNA synthesis, produces an increase in motility in cultured bovine capillary endothelial (BCE) cells, and induces angiogenesis in vivo. The ability of basic FGF to stimulate PA production in BCE cells was used as an assay for the presence of basic FGF-like molecules in extracts of both normal and tumor-derived cultured cells. The identity of the PA-stimulatory activity with basic FGF was confirmed by its high affinity for heparin and by its cross-reactivity with antibodies to human placental basic FGF. Basic FGF-like molecules were identified in eight of ten cell lines tested, and the amount of FGF-like activity present in these cells bore no relation to their origin from normal or tumor tissue. The test cells, BCE cells, had one of the highest levels of FGF-like activity, suggesting that it may have an autocrine role in these cells.  相似文献   

19.
Treatment of Swiss 3T3 fibroblasts with basic fibroblast growth factor (bFGF) lead to a rapid reduction in epidermal growth factor (EGF) binding and a slower inhibition of EGF receptor autophosphorylation. The reduction in binding was due to a complete loss of the highest affinity EGF binding sites and a reduction in the lower affinity binding sites. Neither the inhibition of EGF binding nor the inhibition of EGF receptor autophosphorylation required protein kinase C. Treatment of cells with bFGF stimulated the phosphorylation of the EGF receptor, which persisted for several hours. The inhibition of EGF receptor autophosphorylation by bFGF was reduced in the presence of cycloheximide. However, cycloheximide had no effect on the reduction of EGF binding by bFGF. In contrast to these results with Swiss 3T3 fibroblasts, treatment of PC12 cells with bFGF lead to a reduction in EGF binding but no inhibition of EGF receptor autophosphorylation. Thus inhibited of EGF receptor autophosphorylation and inhibition of EGF binding can be uncoupled. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Experimental conditions have been defined that allow bovine corneal endothelial (BCE) cells to grow in the complete absence of serum. Low density BCE cell cultures maintained on extracellular matrix (ECM)-coated dishes and plated in the total absence of serum proliferate actively when exposed to a synthetic medium supplemented with high density lipoprotein (HDL 500 μg protein/ml), transferrin (10 μg/ml), insulin (5 μg/ml), and fibroblast (FGP) or epidermal growth factor (EGF) added at concentrations of 100 or 50 ng/ml, respectively. Omission of any of these components results in a lower growth rate and/or final cell density of the cultures. BCE cell cultures plated on plastic dishes and exposed to the same synthetic medium grow very poorly. The longevity of BCE cultures maintained on plastic versus ECM and exposed to serum-free versus serum-containing medium has been studied. The use of ECM-coated dishes extended the life span of BCE cultures maintained in serum-supplemented medium to over 120 generations, as compared to less than 20 generations for cultures maintained on plastic. Likewise, BCE cells maintained on ECM and exposed to a synthetic medium supplemented with optimal concentrations of HDL, transferrin, insulin, and FGF underwent 85 generations, whereas control cultures maintained on plastic could not be passaged. The enhancing effect of ECM on BCE cell growth and culture longevity clearly illustrates the importance of the cell substrate in the control of proliferation of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号