首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
1. Scanning electron microscop of the dentition of four anuran species (Discoglossus pictus, Bombina orientalis, Rana cyanophlyctis, Rana temporaria) revealed that at least the primary teeth, which are established during metamorphosis, are more or less bicuspid, bladed and nonpedicel-late. Juveniles and adults, however, have pedicellate teeth. 2. Thus, regardin the pedicellate condition, the sequence of stages in tooth development of Anura und Urodela show some similarities, although the primary teeth of urodeles develop already before metamorphosis.  相似文献   

2.
The morphology of tooth crowns is variable inter-specifically among caecilians. Cusp number and shape, crown dimensions, and crown curvature characterize various species and have both functional and phylogenetic implications. Ichthyophis, Uraeotyphlus, Hypogeophis, and Geotrypetes have bicuspid teeth; Dermophis, Gymnopis, Caecilia, and Typhlonectes monocuspid. Crown morphology as revealed by scanning electron microscopy is associated with prey grasping and, in one case, possible specialization of prey type.  相似文献   

3.
Pacific giant salamanders (Dicamptodon) rank among the largest terrestrial caudates. Their ontogeny produces two distinct morphs—larval‐neotenic and metamorphosed—which differ in many morphological traits. We identified changes that are initiated by metamorphosis (distinguishing transformed from neotenic specimens) and also recognized age‐related changes occurring irrespective of transformation. During metamorphosis, specimens remodel the palate, rearrange the vomerine dentition, expand the maxilla, broaden the cheek, foreshorten the posterior skull table and develop specific serrated suture patterns in the dermal bones. Instead, large larvae grow a robust pterygoid sutured with a fully ossified trapezoidal vomer and a short maxilla. Small larvae are readily distinguished by tooth count, morphology and arrangement from more advanced larvae. Age‐related features, irrespective of metamorphosis, include pedicellate teeth, morphological differentiation of parasphenoid, enlargement of the orbitosphenoid, distal expansion of columella, and loss of coronoid teeth.  相似文献   

4.
Summary Sections of undemineralized tooth germs ofAmbystoma andTriturus were examined. The ultrastructure of early germs, both larval and adult, and of dentinogenesis, resembled that of mammals. In adult bicuspid teeth, once the dentine of the cusps was mineralized, mineral crystals of a similar size to early mammalian enamel crystals, appeared between the dentine and the inner dental epithelium (i.d.e). Concomitantly, the i.d.e showed features of mammalian secreting ameloblasts. This new layer, regarded as true enamel, lacked collagen, possessed an ordered arrangement of crystals and reached a maximum thickness of 6 m.In larval monocuspid teeth, once dentine mineralization had reached the plasma membranes of the i.d.e at the tip of the cusp, the i.d.e developed a ruffled border. At this stage the dentine of the tip, regarded as enameloid, was very hard and difficult to section. The ruffled border, characteristic of other cells which transport materials, was regarded as indicating that the i.d.e was removing organic matter from the enameloid. The differences in development between larval and adult teeth support the concept that there is a change in cellular activity of the i.d.e which occurs during metamorphosis from the larval to the adult urodele.  相似文献   

5.
6.
1. Dentition, tooth structure and course of dental laminae of adult and subadult Sirenidae (Siren intermedia, S. lacertina, Pseudobranchus striatus) have been studied by light microscopy and scanning electron microscopy. 2. Splenials, vomers und palatines bear monocuspid unbladed teeth, arranged in a polystichous pattern, whereas praemaxillaries and maxillaries (so far as present) are edentate. Teeth in S. intermedia show a rough basis, which is more prominent in S. lacertina and which has break-throughs in P. striatus. This zone perhaps is homologous to a developing dividing zone typical for teeth in many “Lissamphibia”. 3. With respect to structure and organisation of dentigerous bones and teeth Sirenidae obviously possess a mosaicism of differently developed larval characters in their mouth cavity. 4. The dentition in the recent forms investigated is compared to that of other paedomorphic Urodela und the ancient Habrosaurus dilatus (Sirenidae).  相似文献   

7.
We describe the morphology of the foregut of the spider crab Maja brachydactyla Balss, 1922, from first larval stage to adult, with detailed stage‐specific documentation using light and scanning electron microscopy. A total of 40 ossicles have been identified in the foregut of adults of M. brachydactyla using Alizarin‐Red staining. The morphological pattern of the ossicles and gastric mill is very similar to other Majoidea species with only a few variations. The foregut of the zoeae stages appeared as a small and simple cavity, with a cardio‐pyloric valve that separates the stomach into cardiac and pyloric regions. The pyloric filter is present from the first zoea, in contrast to the brachyuran species which have an extended larval development. Calcified structures have been identified in the cardio‐pyloric valve and pyloric region of the zoeal stages. The most significant changes in foregut morphology take place after the metamorphosis from ZII to megalopa, including the occurrence of the gastric mill. In the megalopa stage, the foregut ossicles are recognizable by their organization and general morphology, but are different from the adult phase in shape and number. Moreover, the gastric teeth show important differences: the cusps of the lateral teeth are sharp (no molariform); the dorsal tooth have a small, dentate cusp (not a well‐developed quadrangular cusp); and the accessory teeth are composed of one sharp peak (instead of four sharp peaks). The gastric mill ontogeny from megalopa to adult reveals intermediate morphologies during the earlier juvenile stages. The relationship between gastric mill structures with food preferences and their contribution to the brachyuran phylogeny are briefly discussed. J. Morphol. 276:1109–1122, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Most nonmammalian species replace their teeth continuously (so-called polyphyodonty), which allows morphological and structural modifications to occur during ontogeny. We have chosen Pleurodeles waltl, a salamander easy to rear in the laboratory, as a model species to establish the morphological foundations necessary for future molecular approaches aiming to understand not only molecular processes involved in tooth development and replacement, but also their changes, notably during metamorphosis, that might usefully inform studies of modifications of tooth morphology during evolution. In order to determine when (in which developmental stage) and how (progressively or suddenly) tooth modifications take place during ontogeny, we concentrated our observations on a single tooth family, located at position I, closest to the symphysis on the left lower jaw. We monitored the development and replacement of the six first teeth in a large growth series ranging from 10-day-old embryos (tooth I1) to adult specimens (tooth I6), using light (LM), scanning (SEM), and transmission electron (TEM) microscopy. A timetable of the developmental and functional period is provided for the six teeth, and tooth development is compared in larvae and young adults. In P. waltl the first functional tooth is not replaced when the second generation tooth forms, in contrast to what occurs for the later generation teeth, leading to the presence of two functional teeth in a single position during the first 2 months of life. Larval tooth I1 shows dramatically different features when compared to adult tooth I6: a dividing zone has appeared between the dentin cone and the pedicel; the pulp cavity has enlarged, allowing accommodation of large blood vessels; the odontoblasts are well organized along the dentin surface; tubules have appeared in the dentin; and teeth have become bicuspidate. Most of these modifications take place progressively from one tooth generation to the next, but the change from monocuspid to bicuspid tooth occurs during the tooth I3 to tooth I4 transition at metamorphosis.  相似文献   

9.
Abstract Larval competition is common in container‐breeding mosquitoes. The impact of competition on larval growth has been thoroughly examined and findings that larval competition can lead to density‐dependent effects on adult body size have been documented. The effects of larval competition on adult longevity have been less well explored. The effects of intraspecific larval densities on the longevity of adults maintained under relatively harsh environmental conditions were tested in the laboratory by measuring the longevity of adult Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) that had been reared under a range of larval densities and subsequently maintained in high‐ or low‐humidity regimes (85% or 35% relative humidity [RH], respectively) as adults. We found significant negative effects of competition on adult longevity in Ae. aegypti, but not in Ae. albopictus. Multivariate analysis of variance suggested that the negative effect of the larval environment on the longevity of Ae. aegypti adults was most strongly associated with increased development time and decreased wing length as adults. Understanding how larval competition affects adult longevity under a range of environmental conditions is important in establishing the relationship between models of mosquito population regulation and epidemiological models of vector‐borne disease transmission.  相似文献   

10.
The aquatic‐to‐terrestrial shift in the life cycle of most anurans suggests that the differences between the larval and adult morphology of the nose are required for sensory function in two media with different physical characteristics. However, a better controlled test of specialization to medium is to compare adult stages of terrestrial frogs with those that remain fully aquatic as adults. The Ceratophryidae is a monophyletic group of neotropical frogs whose diversification from a common terrestrial ancestor gave rise to both terrestrial (Ceratophrys, Chacophrys) and aquatic (Lepidobatrachus) adults. So, ceratophryids represent an excellent model to analyze the morphology and possible changes related to a secondary aquatic life. We describe the histomorphology of the nose during the ontogeny of the Ceratophryidae, paying particular attention to the condition in adult stages of the recessus olfactorius (a small area of olfactory epithelium that appears to be used for aquatic olfaction) and the eminentia olfactoria (a raised ridge on the floor of the principal cavity correlated with terrestrial olfaction). The species examined (Ceratophrys cranwelli, Chacophrys pierottii, Lepidobatrachus laevis, and L. llanensis) share a common larval olfactory organ composed by the principal cavity, the vomeronasal organ and the lateral appendix. At postmetamorphic stages, ceratophryids present a common morphology of the nose with the principal, middle, and inferior cavities with characteristics similar to other neobatrachians at the end of metamorphosis. However, in advanced adult stages, Lepidobatrachus laevis presents a recessus olfactorius with a heightened (peramorphic) development and a rudimentary (paedomorphic) eminentia olfactoria. Thus, the adult nose in Lepidobatrachus laevis arises from a common developmental ‘terrestrial’ pathway up to postmetamorphic stages, when its ontogeny leads to a distinctive morphology related to the evolutionarily derived, secondarily aquatic life of adults of this lineage.  相似文献   

11.
Odontogenesis of early larval non-pedicellate teeth, late larval teeth with a more or less distinct dividing zone and fully transformed pedicellate teeth in Ambystoma mexicanum (Urodela) was studied to obtain insights into the development of differently structured teeth in lower vertebrates. Using transmission electron microscopy we investigated five developmental stages: (1) papilla; (2) bell stage (secretion of the matrix begins); (3) primordium (mineralization and activity of ameloblasts starts); (4) replacement tooth (young, old); and (5) established, functional tooth. Development of the differently structured teeth is largely identical in the first three stages. Mineralization takes place in apico-basal direction up to the (prospective) pedicel (early and some late larvae) or up to the zone that divides the late larval and transformed tooth in pedicel and dentine shaft (pedicellate condition). Mineralization starts directly at the collagen and by means of matrix vesicles. First odontoblasts develop small processes that extend to the basal lamina of the inner epithelial layer of the enamel organ. The processes are small and lack organelles in early larval teeth, but become larger, arborescent, and contain some organelles in late larval and transformed teeth. The processes are surrounded by unmineralized matrix (predentine). Odontoblasts at the basis of the teeth, at the pedicel, and in the zone of division do not develop significant cytoplasmic processes that extend into the matrix. Cells of the inner enamel epithelium differentiate to ameloblasts that secrete the enamel. In the early larval tooth they show an extensive basal labyrinth that becomes regressive when the enamel layer is completed. In late larval and transformed teeth, however, a large cavity arises between the basal ruffled border of ameloblasts and their basal lamina. This cavity appears to mediate amelogenesis. A small apical zone in early, but not in late larval teeth directly below the thin enamel layer consists of enameloid and is free of dentine channels.  相似文献   

12.
We studied skull, vertebral column, and limb skeleton development in Japanese clawed salamander Onychodactylus japonicus (Hynobiidae). The study is based on the ontogenetic series of embryos and larvae obtained from wild-captured adults by artificial induction of breeding using hormonal stimulation. The first stages of the skeleton formation in O. japonicus are shifted to the late embryonic period and hatching larvae already possess a well-ossified vertebral column, large number of skull ossifications and show signs of ossification in the forelimb skeleton. Compared to the primitive pattern of the skeleton development typical for other hynobiid salamanders, O. japonicus shows a number of heterochronies related to embryonization. In particular, this species is characterized by an earlier ossification of the vertebral column compared to that of the skull and by the delayed development and early reduction of the coronoid. Our results, along with the previously reported data on the skeleton development in the Fischer’s clawed salamander O. fischeri (Smirnov and Vassilieva, 2002), indicate that the genus Onychodactylus is characterized by the loss or reduction of several skeletal features typically found at early larval stages in other Hynobiidae species. In particular, provisional bones (especially the coronoid) and their dentition are underdeveloped. In addition, it is corroborated that the first tooth generation is absent in Onychodactylus, whereas such monocuspid nonpedicellate tooth generation normally develops at the early larval stages of other caudate amphibians. Since similar patterns of skeleton ontogeny are observed in other caudate groups with different extent of embryonization, it is proposed that, in different lineages of Urodela, the evolution of ontogeny followed similar pathways and was accompanied by the same changes in skeletogenesis.  相似文献   

13.
1. Few studies have taken a comprehensive approach of measuring the impact of inter‐ and intra‐specific larval competition on adult mosquito traits. In this study, the impact of competition among Aedes aegypti (L.) and A. albopictus (Skuse) was quantified over the entire life of a cohort. 2. Competitive treatments affected hatch‐to‐adult survivorship and the development time to adulthood of females for both species but affected the median wing length of females only for A. albopictus. Competitive treatments had no significant effect on the median adult female longevity nor were there any effects on other individual traits related to blood feeding and reproductive success. 3. Analysis of life table traits revealed no effect of competitive treatment on the net reproductive rate (R0) but there were significant effects on the cohort generation time (Tc) and the cohort rate of increase (r) for both species. 4. Inter‐ and intra‐specific competition among Aedes larvae may produce individual and population‐level effects that are manifest in adults; however, benign conditions may enable resulting adults to compensate for some impacts of competition, particularly those affecting blood‐feeding success, fecundity, and the net reproductive rate, R0. The effect of competition, therefore, affects primarily larva‐to‐adult survivorship and the larval development time, which in turn impacts the cohort generation time, Tc, and ultimately the cohort rate of increase, r. 5. The lack of effects of the larval rearing environment on adult longevity suggests that effects on vectorial capacity owing to longevity may be limited if adults have easy access to sugar and bloodmeals.  相似文献   

14.
The adult gypsy moth, Lymantria dispar (Lymantriidae: Noctuoidea) has a pair of metathoracic tympanic ears that each contain a two-celled auditory chordotonal organ (CO). The earless forest tent caterpillar moth, Malacosoma disstria (Lasiocampidae: Bombycoidea), has a homologous pair of three-celled, nonauditory hindwing COs in their place. The purpose of our study was to determine whether the adult CO in both species arises from a preexisting larval organ or if it develops as a novel structure during metamorphosis. We describe the larval metathoracic nervous system of L. dispar and M. distria, and identify a three-celled chordotonal organ in the anatomically homologous site as the adult CO. If the larval CO is severed from the homologue of the adult auditory nerve (IIIN1b1) in L. dispar prior to metamorphosis, the adult develops an ear lacking an auditory organ. Axonal backfills of the larval IIIN1b1 nerve in both species reveal three chordotonal sensory neurons and one nonchordotonal multipolar cell. The axons of these cells project into tracts of the central nervous system putatively homologous with those of the auditory pathways in adult L. dispar. Following metamorphosis, M. disstria moths retain all four cells (three CO and one multipolar) while L. dispar adults possess two cells that service the auditory CO and one nonauditory, multipolar cell. We conclude that the larval IIIN1b1 CO is the precursor of both the auditory organ in L. dispar and the putative proprioceptor CO in M. disstria and represents the premetamorphic condition of these insects. The implications of our results in understanding the evolution of the ear in the Lepidoptera and insects in general are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Drosophila larvae and adult pacemaker neurons both express free‐running oscillations of period (PER) and timeless (TIM) proteins that constitute the core of the cell‐autonomous circadian molecular clock. Despite similarities between the adult and larval molecular oscillators, adults and larvae differ substantially in the complexity and organization of their pacemaker neural circuits, as well as in behavioral manifestations of circadian rhythmicity. We have shown previously that electrical silencing of adult Drosophila circadian pacemaker neurons through targeted expression of either an open rectifier or inward rectifier K+ channel stops the free‐running oscillations of the circadian molecular clock. This indicates that neuronal electrical activity in the pacemaker neurons is essential to the normal function of the adult intracellular clock. In the current study, we show that in constant darkness the free‐running larval pacemaker clock—like that of the adult pacemaker neurons they give rise to—requires membrane electrical activity to oscillate. In contrast to the free‐running clock, the molecular clock of electrically silenced larval pacemaker neurons continues to oscillate in diurnal (light–dark) conditions. This specific disruption of the free‐running clock caused by targeted K+ channel expression likely reflects a specific cell‐autonomous clock‐membrane feedback loop that is common to both larval and adult neurons, and is not due to blocking pacemaker synaptic outputs or disruption of pacemaker neuronal morphology. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

16.
The pharyngeal and oral teeth of the fish Tilapia mossambica (Peters) were examined with a scanning microscope. It appeared that the dorsal pharyngeal teeth form a peculiar hooklike extension at the tip, whereas the ventral pharyngeal teeth tend to curve in a posterior direction. The two lateral flanges at the tip of the ventral teeth are probably the areas of contact with the dorsal teeth when the latter are pressed down during sound production or feeding. However, the oral teeth develop along a different line. A part from villiform teeth the upper and lower jaws also develop tricuspid and bicuspid oral teeth, with the bicuspids concentrated mainly along the outer edge of the jaw.  相似文献   

17.
Evolution of pollen feeding in Heliconius has allowed exploitation of rich amino acid sources and dramatically reorganized life‐history traits. In Heliconius, eggs are produced mainly from adult‐acquired resources, leaving somatic development and maintenance to larva effort. This innovation may also have spurred evolution of chemical defence via amino acid‐derived cyanogenic glycosides. In contrast, nonpollen‐feeding heliconiines must rely almost exclusively on larval‐acquired resources for both reproduction and defence. We tested whether adult amino acid intake has an immediate influence on cyanogenesis in Heliconius. Because Heliconius are more distasteful to bird predators than close relatives that do not utilize pollen, we also compared cyanogenesis due to larval input across Heliconius species and nonpollen‐feeding relatives. Except for one species, we found that varying the amino acid diet of an adult Heliconius has negligible effect on its cyanide concentration. Adults denied amino acids showed no decrease in cyanide and no adults showed cyanide increase when fed amino acids. Yet, pollen‐feeding butterflies were capable of producing more defence than nonpollen‐feeding relatives and differences were detectable in freshly emerged adults, before input of adult resources. Our data points to a larger role of larval input in adult chemical defence. This coupled with the compartmentalization of adult nutrition to reproduction and longevity suggests that one evolutionary consequence of pollen feeding, shifting the burden of reproduction to adults, is to allow the evolution of greater allocation of host plant amino acids to defensive compounds by larvae.  相似文献   

18.
The morphology of the foregut of the Say's mud crab Dyspanopeus sayi was described in adults and larvae. The ossicle system was illustrated based on a staining method with Alizarin-Red. The gastric teeth and cardio-pyloric valve were dissected and examined using optical and scanning electron microscopy. In the adults, the morphology of ossicles and gastric teeth of D. sayi is very similar to the related species Rhithropanopeus harrisii. The foregut of first zoea (ZI) presented a functional cardio-pyloric valve while the filter press was lacking. The filter press was observed in the pyloric chamber from ZII. The most significant changes in morphology take place after metamorphosis from ZIV to megalopa, including the occurrence of the gastric mill. The organization and morphology of many megalopal foregut ossicles are recognizable in the adult phase, although the morphology of the gastric teeth differs from the morphology of adults. A correlation of gastric mill structures with food preferences and their contribution to the phylogeny are briefly discussed.  相似文献   

19.
Cell population and neuropile morphology of larval and adult brains of the monarch butterfly, Danaus plexippus plexippus, L., are compared. The larval brain is in continuous transition, the processes of adult brain development being underway from the earliest larval stages. It is characterized by a less diverse population of cells and more homogenous fiber areas than those of the adult. Neuroblasts, which divide to form the neurones of the adult brain, occur either in discrete proliferation centers or scattered among the larval ganglion cells. The larval brain contains, in addition to small homogeneous antennal centers and a distinct larval optic center, rapidly developing adult optic centers, corpora pedunculata, and protocerebral bridge. The larval brain lacks a central body. Major differences between larval and adult brains are clearly related to the increased dependence of the adult upon sensory input from the eyes and antennae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号