首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane was partly purified by treatments with sodium cholate and lysophosphatidylcholine, and by isopycnic centrifugation on sucrose gradients. The ATPase activity had high sensitivity to detergents, poor nucleotide specificity and broad tolerance for divalent cations. It was insensitive to mitochondrial ATPase inhibitors such as oligomycin and to transport ATPase inhibitors such as vanadate and ouabain. Using the cholate dialysis procedure, the partly purified enzyme was incorporated into asolectin vesicles. Upon addition of Mg2+-ATP, fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) was observed. The quenching was abolished by a protonophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Asolectin vesicles or purified ATPase alone failed to promote quenching. These data suggest that the Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane is able of H+-translocation coupled to ATP hydrolysis.  相似文献   

2.
The goal of this investigation was to develop an assay whereby we could measure changes in ATP, ADP, and phosphocreatine (PCr) during stimulation of the sarcoplasmic reticulum (SR) Ca2+ ATPase. After stopping the enzyme reaction, compounds were extracted by perchloric acid and separated by reversed-phase high-performance liquid chromatography (HPLC). Absorbance of ATP and ADP was monitored at 260 nm, and detection of PCr was done at 205 nm. Chromatograms show that peaks associated with each compound are clearly separated and easily detected. The SR Ca2+ ATPase assay was run for various time periods and using varying free [Ca2+]. The changes in ATP and ADP contents were linear with increasing time and varied as expected with increasing free [Ca2+]. The ATPase activities determined using changes in ATP and ADP were nearly identical to those determined using previously established assays. When PCr was added to the assay, we were able to confirm that the Ca2+ ATPase uses ATP that is synthesized locally from PCr via creatine kinase (CK). The results indicate that this is a valid and reliable method for examining SR Ca2+ ATPase activity and for investigating its interaction with CK.  相似文献   

3.
Sarcoplasmic reticulum ATPase was specifically labeled by the fluorescent probe N-(1-pyrene)maleimide which modified 1 mol of a highly reactive thiol residue per mol of ATPase under appropriate conditions, when the probe concentration was varied in the range 0.1-1.5 microM. Addition of inorganic phosphate to the labeling medium increased both the rate of labeling and the number of modified thiol residues. Addition of ATP gave a marked kinetic protection from labeling, suggesting that the label was attached to a protein domain which is sensitive to changes at the catalytic site. Quenching of pyrene fluorescence emission of labeled ATPase by acrylamide and cesium chloride gave linear Stern-Volmer plots. The Stern-Volmer quenching constants of pyrene-ATPase fluorescence were 10 times lower than the constant obtained for acrylamide quenching of the fluorescent adduct of pyrene-maleimide-cystein used as a control, indicating that the pyrene moiety of the probe was considerably shielded from the medium solvent when covalently attached to the ATPase. The efficiency of quenching of pyrene-ATPase fluorescence increased by a significant amount upon addition of 100 microM Ca2+, when compared to the quenching in the presence of a Ca2+ chelator. It suggests that occupancy of the high affinity Ca2+ sites of the ATPase increases the accessibility of medium solvent into hydrophobic domains of the enzyme. The fluorescence lifetime of the solubilized pyrene-ATPase emission was 144-149 ns. The fluorescence polarization of pyrene-ATPase solubilized by nonionic detergent C12E8 was rho = 0.10 and it increased with an increase in the viscosity of the medium yielding a linear Perrin plot. The rotational correlation time for the soluble ATPase was 532 ns, corresponding to the overall rotation of a detergent-pyrene-ATPase particle with radius of 87A.  相似文献   

4.
The binding of Eu3+ with Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ([Ca2+ + Mg2+]-ATPase) of cardiac sarcoplasmic reticulum (SR) has been investigated using direct laser excited Eu3+ luminescence. Eu3+ is found to inhibit both Ca2+-dependent ATPase activity and Ca2+-uptake in a parallel manner. This is attributed to the binding of Eu3+ to the high affinity Ca2+-binding sites. The Ki for Ca2+-dependent ATPase is approximately 50 nM. The 7F0----5D0 excitation spectrum of Eu3+ in cardiac SR shows a peak at 579.3 nm, as compared to 578.8 nm in potassium-morpholino propane sulfonic acid (K-MOPS) pH 6.8. Upon binding with cardiac SR, Eu3+ shows an increase in fluorescence intensity as well as in lifetime values. The fluorescence decay of bound Eu3+ exhibits a double-exponential curve. The apparent number of water molecules in the first coordination sphere of Eu3+ in SR is 2.8 for the short component and 1.0 for the long component. In the presence of ATP, a further increase in fluorescence lifetimes is observed, and the number of water molecules in the first coordination sphere of Eu3+ is reduced further to 1.3 and 0.5. The double exponential nature of the decay curve and the different number of water molecules coordinated to Eu3+ for both decay components suggest that Eu3+ binds to two sites and that these are heterogeneous. The reduction in the number of H2O ligands in the presence of ATP shows a change in the molecular environment of the Eu3+-binding sites upon phosphoenzyme formation, with a movement of Eu3+ to an occluded site on the enzyme.  相似文献   

5.
J W Berger  J M Vanderkooi 《Biochemistry》1989,28(13):5501-5508
Room temperature phosphorescence techniques were used to study the structural and dynamic features of the tryptophan residues in bovine alpha-crystallin. Upon excitation at 290 nm, the characteristic signature of tryptophan phosphorescence was observed with an emission maximum at 442 +/- 2 nm. The phosphorescence intensity decay was biphasic with lifetimes of 5.4 ms (71%) and 42 ms (29%). Phosphorescence quenching measurements strongly suggest that each component corresponds to one class of tryptophans with the more buried residues having the longer emission lifetime. Three small-molecule quenchers were surveyed, and in order of increasing quenching efficiency: iodide less than nitrite less than acrylamide. A heavy-atom effect was observed in iodide solutions, and an upper limit of 5% was placed on the quantum yield of triplet formation in iodide-free solutions, while the phosphorescence quantum yield was estimated to be approximately 3.2 x 10(-4). The temperature dependence of the phosphorescence lifetime was measured between 5 and 40 degrees C. Arrhenius plots exhibited discontinuities at 26 and 29 degrees C for the short- and long-lived components, respectively, corresponding to abrupt transitions in segmental flexibility. Denaturation studies revealed conformational transitions between 1 and 2 M guanidine hydrochloride, and 4 and 6 M urea. Long-lived phosphorescence lifetimes of 3 and 7 ms were measured in 6 M guanidine hydrochloride and 8 M urea, respectively, suggesting that some structural features are preserved even at very high concentrations of denaturant. Our studies demonstrate the sensitivity of room temperature phosphorescence spectroscopy to the structure of alpha-crystallin, and the applicability of this technique for monitoring conformational changes in lens crystallin proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
It was shown that eosine and erythrosine are competing inhibitors of the Ca2+-Mg2+- dependent ATPase active center of sarcoplasmic reticulum. The eosine and erythrosine inhibition constants are equal to 1.4 x 10(-6) M and 1.1 x 10(-6) M, respectively. Nitroxide radicals of various hydrophobicity and K3Fe(CN)6 were used to compare the constants of triplet states exchange quenching of erythrosine in aqueous solution, in lecithine liposomes and in ATPase active center of sarcoplasmic reticulum. It was established that ATPase binding center was immersed into a liquid phase and was not connected with lipids. Mn2+ and Gd3+-ions, which are competing with Mg2+ and Ca2+ for binding sites in the enzyme active center, diminished the phosphorescence quenching time of eosine at 77K. This means that the ion binding sites are less than 12 A apart from ATP-binding center.  相似文献   

7.
The ATPase of the sarcoplasmic reticulum is phosphorylated by ATP in the presence of Ca2+. A rapid phosphorylation was observed when the enzyme was preincubated with Ca2+ prior to the addition of 0.1 or 1 mM ATP. The rate of phosphorylation was decreased when Ca2+ was omitted from the preincubation medium and added with ATP when the reaction was started. The rate of phosphorylation by ATP was further decreased when Pi was included in the preincubation medium without Ca2+. In this case, the enzyme was phosphorylated by Pi during the preincubation. When Ca2+ and ATP were added, a burst of phosphorylation by ATP was observed in the initial 16 ms. In the subsequent incubation intervals, the phosphorylation by ATP was synchronous with the hydrolysis of the phosphoenzyme formed by Pi. The rate of hydrolysis of the phosphoenzyme formed by Pi was measured when either the Pi concentration was decreased 10 fold, or when Ca2+, ATP or ATP plus Ca2+ was added to the medium. Upon the single addition of Ca2+, the time for half-maximal decay was in the range 500--1000 ms. In all other conditions it was in the range 70--90 ms.  相似文献   

8.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

9.
The fluorescent thiol reagent N-(1-anilinonaphthyl-4)maleimide (ANM) reacts covalently with the Ca2+ ATPase moiety of fragmented sarcoplasmic reticulum in two phases as determined by the increase of fluorescence intensity and optical density at 350 nm. In the rapid phase, 5.5 nmol of ANM reacts with 1 mg of fragmented sarcoplasmic reticulum protein. Assuming that 55% of the total membrane protein is the Ca2+ ATPase, this is equivalent to 1 mol of SH/10(5) g of ATPase, designated as SH1-ANM. ANM reacts with the second SH (SH2-ANM) at a much slower rate. Reaction of ANM with both SH1-ANM and SH2-ANM produces no inhibition of phosphoenzyme (EP) formation. Upon addition of Mg . ATP in the micromolar range, at [Ca2+] = 1 microM there is an increase in the fluorescence intensity of ANM attached to SH2-ANM, while the ANM attached to SH1-ANM does not respond to Mg . ATP. Under conditions in which there is no EP formation, there is no fluorescence change. Furthermore, the enhancement of ANM fluorescence produced by Mg . ATP is reversed by ADP as it reacts with EP to form ATP. Thus, it appears that the Mg . ATP-induced fluorescence increase reflects changes of enzyme conformation produced by EP formation.  相似文献   

10.
The Ca2+/Mg2+ ATPase of rat heart plasma membrane was activated by millimolar concentrations of Ca2+ or Mg2+; other divalent cations also activated the enzyme but to a lesser extent. Sodium azide at high concentrations inhibited the enzyme by about 20%; oligomycin at high concentrations also inhibited the enzyme slightly. Trifluoperazine at high concentrations was found inhibitory whereas trypsin treatment had no significant influence on the enzyme. The rate of ATP hydrolysis by the Ca2+/Mg2+ ATPase decayed exponentially; the first-order rate constants were 0.14-0.18 min-1 for Ca2+ ATPase activity and 0.15-0.30 min-1 for Mg2+ ATPase at 37 degrees C. The inactivation of the enzyme depended upon the presence of ATP or other high energy nucleotides but was not due to the accumulation of products of ATP hydrolysis. Furthermore, the inactivation of the enzyme was independent of temperature below 37 degrees C. Con A when added into the incubation medium before ATP blocked the ATP-dependent inactivation; this effect was prevented by alpha-methylmannoside. In the presence of low concentrations of detergent, the rate of ATP hydrolysis was reduced while the ATP-dependent inactivation was accelerated markedly. Both Con A and glutaraldehyde decreased the susceptibility of Ca2+/Mg2+ ATPase to the detergent. These results suggest that the Ca2+/Mg2+ ATPase is an intrinsic membrane protein which may be regulated by ATP.  相似文献   

11.
The fluorescence and phosphorescence properties of various divalent metal cations and adenosine triphosphate (ATP) dissolved in 1:1 volume by volume of ethylene glycol and water at 77 K have been studied. The present results indicate that Co2+, Ni2+ and Mn2+ quench the phosphorescence of ATP, whereas the fluorescence and the phosphorescence decays are not or only slightly affected. On the other hand, Ca2+ and Mg2+ have no remarkable effect upon the fluorescence and phosphorescence properties.  相似文献   

12.
Nd3+ binding to sarcoplasmic reticulum (SR) was detected by inhibition of ATPase activity and directly by a fluorimetric assay. Both methods indicated that Nd3+ inhibited the ATPase activity by binding in the high-affinity Ca2+ binding sites. The stoichiometry of binding was about 11 nmol of Nd3+ bound per mg of SR proteins at pNd = 6.5. At higher [Nd3+], substantial nonspecific binding occurred. The association constant for Nd3+ binding to the high-affinity Ca2+ binding sites was estimated to be near 2 X 10(9) M-1. When the CaATPase was inactivated with fluorescein isothiocyanate (FITC), 5.3 nmol were bound per mg of SR protein. This fluorescent probe is known to bind in the ATP binding site. The stoichiometry of Nd3+ binding to FITC-labeled CaATPase was the same, within experimental error, as to the unlabeled CaATPase. Fluorescence energy transfer between FITC in the ATP site and Nd3+ in the Ca2+ sites was found to be very small. This donor-acceptor pair has a critical distance of 0.93 nm and the distance between the ATP site and the closest Ca2+ was estimated to be greater than 2.1 nm. Parallel measurements with FITC-labeled SR and Co2+, an acceptor with a critical distance 1.2 nm, suggested the ATP and Ca2+ binding sites are greater than 2.6 nm apart.  相似文献   

13.
1. Photolabelling of chloroplast ATPase (CF1) with either 8-azido-ATP or 8-azido-ADP leads to inactivation of the ATPase activity. ATP and ADP protect against the inactivation, whereas AMP dose not. 2. Ca2+ has little if any effect on the degree of inactivation by photolabelling with 8-azido-ADP, but, at the same degree of inactivation, twice as much label is bound in the presence of Ca2+ as in its absence. 3. The degree of inactivation of ATPase and the amount of bound photolabel are independent of the extent of pre-activation of the CF1. 4. Upon extrapolation to complete inactivation, 2 mol label, either 8-azido-ATP or 8-azido-ADP can be bound. 5. In all cases the label is bound specifically to the alpha and beta subunits in almost equal amounts. The location of the bound label is not affected by addition of Ca2+, ATP or ADP.  相似文献   

14.
The fluorescent reagent, S-mercuric N-dansyl-cysteine, reacts specifically with thiols of the purified Ca2+-ATPase of the sarcoplasmic reticulum, producing an increase of fluorescence of fluorescence intensity at 500 nm (lambda ex = 335 nm). The reaction is stoichiometric, and the increase of the fluorescence intensity is proportional to the number of blocked thiols. Twelve reactive thiols per 10(5) daltons of ATPase peptide fall into roughly three classes. Blocking of the most reactive thiol entails little inhibition of enzyme activity. Blocking of the five thiols reacting next (intermediate class) results in almost complete inhibition of both phosphorylated intermediate formation and ATP hydrolysis. The second order rate constants of the reaction of thiols have been determined by stopped flow studies. The most reactive thiol and the six least reactive thiols can each be treated as a single class with respect to the rate constant; five thiols of intermediate reactivity appear to have different rate constants (k2, k3, ..k6). Of these constants, k1, corresponding to the most reactive thiol, does not change with [Ca2+]. Upon increasing [Ca2+] from 10(-9) to 10(-5) M, k2 increase and k7-12 decreases; the changes roughly parallel the activation of ATPase activity and the Ca2+ binding to the high affinity alpha sites (Ikemoto, N. (1975) J. Biol. Chem. 250, 7219-7224). Upon further increase of [Ca2+] k2 decreases and k7-12 increase, in parallel with the inhibition of ATPase activity and with the Ca2+ binding to the low affinity gamma sites.  相似文献   

15.
In human red cell membranes the sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is at least ten times larger than the sensitivity to N-ethylmaleimide of (Na+ + K+)-ATPase and K+-activated phosphatase activities. All activities are partially protected against N-ethylmaleimide by ATP but not by inorganic phosphate or by p-nitrophenylphosphate. (ii) Protection by ATP of (Na+ + K+)-ATPase is impeded by either Na+ or K+ whereas only K+ impedes protection by ATP of K+-activated phosphatase. On the other hand, Na+ or K+ slightly protects Ca2+-dependent activities against N-ethylmaleimide, this effect being independent of ATP. (iii) The sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is markedly enhanced by low concentrations of Ca2+. This effect is half-maximal at less than 1 micron Ca2+ and does not require ATP, which suggests that sites with high affinity for Ca2+ exist in the Ca2+-ATPase in the absence of ATP. (IV) Under all conditions tested the response to N-ethylmaleimide of the ATPase and phosphatase activities stimulated by K+ or Na+ in the presence of Ca2+ parallels that of the Ca2+-dependent activities, suggesting that the Ca2+-ATPase system possesses sites at which monovalent cations bind to increase its activity.  相似文献   

16.
Inverted membrane vesicles from strain 7, a wild type Escherichia coli K12 strain, actively transport calcium with energy supplied either by respiration or by ATP. These vesicles also have energy-linked quenching of quinacrine fluorescence. Membranes of strain 7, depleted of Mg2+ATPase by EDTA treatment, lack both activities. Membrane vesicles from strain NR70, a mutant lacking the Mg2+ATPase, show neither calcium transport nor energy-linked fluorescence quenching. Neither EDTA treatment nor genetic loss of the Mg2+atpase causes a reduction in respiration. Purified Mg2+ATPase from strain 7 can bind to EDTA-treated membrane vesicles from either strain 7 or NR70. This binding restored both calcium transport and fluorescence quenching, driven either by respiration or by ATP. Dicyclohexylcarbodiimide treatment mimics the effect of the Mg2+ATPase in the case of respiration-driven reactions. Treatment with EDTA, while not essential for the binding of the Mg2+ATPase to membrane vesicles of NR70, produced better restoration of both activities. The rate of restoration of fluorescence quenching showed a time lag which may indicate that binding of the Mg2+ATPase is a relatively slow process. Antiserum prepared against the Mg2+ATPase inhibited the quenching of quinacrine fluorescence when driven by ATP but not when driven by respiration. Addition of antiserum prior to addition of Mg2+ATPase prevented the restoration of fluorescence quenching, whether driven by respiration or ATP. These results clearly show that MG2+ATPase has an important role not only in catalyzing ATP synthesis and hydrolysis but also in maintaining the energized membrane state.  相似文献   

17.
The Mechanism of the Action of Caffeine on Sarcoplasmic Reticulum   总被引:20,自引:6,他引:14       下载免费PDF全文
Evidence is presented that caffeine does not act on the mitochondrial Ca uptake system and that its effect cannot be attributed to the accumulation of adenosine 3',5'-phosphate. Two distinct caffeine effects are described. At high ATP concentrations caffeine decreases the coupling between ATP hydrolysis and Ca inflow. It either inhibits inflow without any inhibition of the rate of ATP hydrolysis, or it stimulates the ATPase activity without stimulating Ca inflow. These high ATP concentrations (much higher than needed for the saturation of the transport ATPase) greatly reduce the control of the turnover rate of the transport system, by accumulated Ca. At low ATP concentrations when the transport system is under maximal control by accumulated Ca, caffeine inhibits the ATPase activity without affecting the rate of Ca inflow.  相似文献   

18.
(Ca2+ + Mg2+)-stimulated ATPase of human red cell membranes as a function of ATP concentration was measured at fixed Ca2+ concentration and at two different but constant Mg2+ concentrations. Under the assumption that free ATP rather than Mg-ATP is the substrate, a value for Km (for ATP) of 1-2 micron is found which is in good agreement with the value obtained in the phosphorylation reaction by A.F. Rega and P.J. Garrahan (1975. J. Membrane Biol. 22:313). Mg2+ increases both the maximal rate and the affinity for ATP, whereas Ca2+ increases the maximal rate without affecting Km for ATP. As a by-product of these experiments, it was shown that after thorough removal of intracellular proteins the adenylate kinase reaction at approximately 1 mM substrate concentration is several times faster than maximal rate of (Ca2+ + Mg2+)ATPase in red cell membranes.  相似文献   

19.
The ATPase activity of CF1 isolated from pea chloroplasts with epsilon-ATP, the fluorescent analog of ATP and ATP used as substrates, in the presence of Mg2+, Ca2+ and sodium sulfite (stimulator of the ATPase activity) was studied. The rate of epsilon-ATP hydrolysis in the presence of Mg2+ is nearly two times as low as that of ATP; an addition of sodium sulfite to the reaction mixture increases the reaction rate without changing the above ratio. The rate of Ca2+-dependent hydrolysis of epsilon-ATP is rather low as compared to that in the presence of Mg2+. epsilon-ADP is a competitive inhibitor of Mg2+-dependent ATPase reaction and inhibits this process in the presence of Ca2+, the inhibition being of a mixed type. Modification of CF1 by covalent binding of epsilon-ADP results in a 70-80% decrease of the Mg2+-dependent ATPase activity, the Ca2+-dependent ATPase activity is changed only insignificantly thereby. The differences in the activation of ATP and epsilon-ATP hydrolyses by Ca2+ and Mg2+ can be accounted for by the existence of two sites in the active center of CF1, which are specific for Mg2+ and Ca2+, respectively. It is concluded that the binding of epsilon-ADP occurs in the Mg2+-dependent ATPase site of the active center.  相似文献   

20.
The fluorescence and phosphorescence spectra of model indole compounds and of cod parvalbumin III, a protein containing a single tryptophan and no tyrosine, were examined in the time scale ranging from subnanoseconds to milliseconds at 25 degrees C in aqueous buffer. For both Ca- bound and Ca-free parvalbumin and for model indole compounds that contained a proton donor, a phosphorescent species emitting at 450 nm with a lifetime of approximately 20-40 ns could be identified. A longer-lived phosphorescence is also apparent; it has approximately the same absorption and emission spectrum as the short-lived triplet molecule. For Ca parvalbumin, the decay of the long-lived triplet tryptophan is roughly exponential with a lifetime of 4.7 ms at 25 degrees C whereas for N-acetyltryptophanamide in aqueous buffer the decay lifetime was 30 microseconds. In contrast, the lifetime of the long-lived tryptophan species is much shorter in the Ca-free protein compared with Ca parvalbumin, and the decay shows complex nonexponential kinetics over the entire time range from 100 ns to 1 ms. It is concluded that the photochemistry of tryptophan must take into account the existence of two excited triplet species and that there are quenching moieties within the protein matrix that decrease the phosphorescence yield in a dynamic manner for the Ca-depleted parvalbumin. In contrast, for Ca parvalbumin, the tryptophan site is rigid on the time scale of milliseconds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号