首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We employed whole‐mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock‐induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33°C heatshock. The lowest temperature capable of inducing this pattern was 30°C. Placement of embryos at 22°C following a 1‐h 33°C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues. Dev. Genet. 25:365–374, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
In previous studies, the only small HSPs that have been studied in Xenopus laevis are members of the HSP30 family. We now report the analysis of Xenopus HSP27, a homolog of the human small HSP, HSP27. To date the presence of both hsp30 and hsp27 genes has been demonstrated only in minnow and chicken. Xenopus HSP27 cDNA encodes a 213 aa protein that contains an alpha-crystallin domain as well as a polar C-terminal extension. Xenopus HSP27 shares 71% identity with chicken HSP24 but only 19% identity with Xenopus HSP30C. Northern blot analysis revealed that Xenopus HSP27 gene expression was developmentally regulated. Constitutive and heat shock-induced hsp27 mRNA accumulation was first detectable at the early tailbud stage while HSP27 protein was detected at the tadpole stage. Furthermore, hsp27 mRNA was enriched in selected tissues under both control and heat shock conditions. Whole mount in situ hybridization analysis detected the presence of this message in the lens vesicle, heart, head, somites, and tail region. Purified recombinant HSP27 protein displayed molecular chaperone properties since it had the ability to inhibit heat-induced aggregation of target proteins including citrate synthase, malate dehydrogenase and luciferase. Thus, Xenopus HSP27, like HSP30, is a developmentally-regulated heat-inducible molecular chaperone.  相似文献   

3.
4.
We examined the effect of quercetin (3,3',4',5,7-pentahydroxyflavon) and KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat-induced heat shock protein (hsp) gene expression in Xenopus laevis A6 kidney epithelial cells. In previous studies, both quercetin and KNK437 inhibited heat shock factor activity resulting in a repression of hsp mRNA and protein accumulation in human cultured cells. In this first study of the effect of these hsp gene expression inhibitors in a non-mammalian cell line, we report that both quercetin and KNK437 reduced the heat shock-induced accumulation of hsp30, hsp47 and hsp70 mRNA in X. laevis cultured cells. However, these inhibitors had no effect on the relative level of a non-heat shock protein mRNA, ef1alpha, in either control or heat shocked cells. Western blot and immunocytochemical analyses revealed that quercetin partially inhibited HSP30 protein accumulation. In contrast, HSP30 protein was not detectable in KNK437-treated cells. Finally, treatment of A6 cells with KNK437 inhibited the heat shock-induced acquisition of thermotolerance, as determined by preservation of actin filaments and cellular morphology using immunocytochemistry and laser scanning confocal microscopy.  相似文献   

5.
Cadmium is a highly toxic environmental pollutant that has been classified as a human carcinogen. Toxicological responses to cadmium exposure include respiratory diseases, neurological disorders and kidney damage. In the present study, we have characterized the effect of cadmium on the accumulation of the small heat shock protein (HSP), HSP30, in Xenopus laevis A6 kidney epithelial cells. Incubation of A6 cells with cadmium chloride induced the accumulation of HSP30 protein and hsp30 mRNA. While HSP70 protein and hsp70 mRNA accumulation were also induced, the relative levels of actin remained relatively unaffected. Elevated levels of HSP30 were detected in cells undergoing prolonged exposure of cells to cadmium chloride or in cells recovering from cadmium chloride treatment. Immunocytochemical analysis of cadmium chloride-treated A6 cells revealed HSP30 accumulation primarily in the cytoplasm in a punctate pattern supplemented with larger HSP30 staining structures. Also, HSP30 co-localized with the F-actin cytoskeleton at higher cadmium chloride concentrations. The combination of mild heat shock temperatures plus cadmium chloride concentrations employed in this study resulted in a synergistic accumulation of HSP30 protein and hsp30 mRNA. Finally, in contrast to heat shock, prior exposure of Xenopus A6 cells to cadmium chloride treatment, sufficient to induce the accumulation of HSPs, did not protect the cells against a subsequent thermal challenge.  相似文献   

6.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

7.
Elevation of the incubation temperature of Xenopus laevis neurulae from 22 to 33-35 degrees C induced the accumulation of heat shock protein (hsp) 70 mRNA (2.7 kilobases (kb)) and a putative hsp 87 mRNA (3.2 kb). While constitutive levels of both hsp mRNAs were detectable in unfertilized eggs and cleavage-stage embryos, heat-induced accumulation was not observed until after the mid-blastula stage. Exposure of Xenopus laevis embryos to other stressors, such as sodium arsenite or ethanol, also induced a developmental stage-dependent accumulation of hsp 70 mRNA. To characterize the effect of temperature on hsp 70 mRNA induction, neurulae were exposed to a range of temperatures (27-37 degrees C) for 1 h. Heat-induced hsp 70 mRNA accumulation was first detectable at 27 degrees C, with relatively greater levels at 30-35 degrees C and lower levels at 37 degrees C. A more complex effect of temperature on hsp 70 mRNA accumulation was observed in a series of time course experiments. While continuous exposure of neurulae to heat shock (27-35 degrees C) induced a transient accumulation of hsp 70 mRNA, the temporal pattern of hsp 70 mRNA accumulation was temperature dependent. Exposure of embryos to 33-35 degrees C induced maximum relative levels of hsp 70 mRNA within 1-1.5 h, while at 30 and 27 degrees C peak hsp 70 mRNA accumulation occurred at 3 and 12 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Factors influencing the heat shock response of Xenopus laevis embryos   总被引:1,自引:0,他引:1  
We have further characterized the heat shock response of Xenopus laevis embryos. Xenopus embryos respond to heat shock by consistently synthesizing four major heat shock proteins (hsps) of 62, 70, 76, and 87 kilodaltons. In addition to these hsps, heat-shocked embryos also exhibit the synthesis of several minor hsps. The synthesis of these hsps is often variable. We have monitored the effects of different temperatures and lengths of heat shock on the pattern and intensity of hsp synthesis. In general, the four major hsps are induced more strongly at higher temperatures and during increasing intervals of heat shock. The temperature and duration of heat shock can affect the synthesis of the minor hsps, however. Some hsps are synthesized at lower temperatures only (i.e., below 37 degrees C), whereas others are synthesized only at higher temperatures (i.e., above 37 degrees C). We have extensively examined the characteristics of hsp 35 synthesis, one of the most variably synthesized hsps. This hsp is characteristically synthesized at temperatures above 35 degrees C and usually during the first 40 min of heat shock, after which it becomes undetectable. In some experiments, its synthesis is restimulated during later intervals of heat shock. Hsp 35 is also under developmental regulation. It is not synthesized by heat-shocked embryos until the late blastula to early gastrula stage. After this brief period of inducibility, its synthesis is dramatically reduced in mid- to late gastrulae, but reappears in heat-shocked neurulae. We have previously demonstrated that hsp 35 is related to the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The induction of hsp 35 synthesis is inversely correlated with the constitutive levels of GAPDH specific activity. In this paper we document further correlations between the synthesis of hsp 35 and GAPDH specific activity during early Xenopus development.  相似文献   

9.
In the present study we have characterized the synthesis of members of the HSP30 family during Xenopus laevis development using a polyclonal antipeptide antibody derived from the carboxyl end of HSP30C. Two-dimensional PAGE/immunoblot analysis was unable to detect any heat-inducible small HSPs in cleavage, blastula, gastrula, or neurula stage embryos. However, heat-inducible accumulation of a single protein was first detectable in early tailbud embryos with an additional 5 HSPs at the late tailbud stage and a total of 13 small HSPs at the early tadpole stage. In the Xenopus A6 kidney epithelial cell line, a total of eight heat-inducible small HSPs were detected by this antibody. Comparison of the pattern of protein synthesis in embryos and somatic cells revealed a number of common and unique heat inducible proteins in Xenopus embryos and cultured kidney epithelial cells. To specifically identify the protein product of the HSP30C gene, we made a chimeric gene construct with the Xenopus HSP30C coding sequence under the control of a constitutive promoter. This construct was microinjected into fertilized eggs and resulted in the premature and constitutive synthesis of the HSP30C protein in gastrula stage embryos. Through a series of mixing experiments, we were able to specifically identify the protein encoded by the HSP30C gene in embryos and somatic cells and to conclude that HSP30C synthesis was first heat-inducible at the early tailbud stage of development. The differential pattern of heat-inducible accumulation of members of the HSP30 family during Xenopus development suggests that these proteins may have distinct functions at specific embryonic stages during a stress response.  相似文献   

10.
In this study we characterized the chaperone functions of Xenopus recombinant Hsp30C and Hsp30D by using an in vitro rabbit reticulocyte lysate (RRL) refolding assay system as well as a novel in vivo Xenopus oocyte microinjection assay. Whereas heat- or chemically denaturated luciferase (LUC) did not regain significant enzyme activity when added to RRL or microinjected into Xenopus oocytes, compared with native LUC, denaturation of LUC in the presence of Hsp30C resulted in a reactivation of enzyme activity up to 80-100%. Recombinant Hsp30D, which differs from Hsp30C by 19 amino acids, was not as effective as its isoform in preventing LUC aggregation or maintaining it in a folding-competent state. Removal of the first 17 amino acids from the N-terminal region of Hsp30C had little effect on its ability to maintain LUC in a folding-competent state. However, deletion of the last 25 residues from the C-terminal end dramatically reduced Hsp30C chaperone activity. Coimmunoprecipitation and immunoblot analyses revealed that Hsp30C remained associated with heat-denatured LUC during incubation in reticulocyte lysate and that the C-terminal mutant exhibited reduced affinity for unfolded LUC. Finally, we found that Hsc70 present in RRL interacted only with heat-denatured LUC bound to Hsp30C. These findings demonstrate that Xenopus Hsp30 can maintain denatured target protein in a folding-competent state and that the C-terminal end is involved in this function.  相似文献   

11.
HSP47 is an endoplasmic reticulum (ER)-resident molecular chaperone involved in collagen production. This study examined the stress-induced pattern of hsp47 gene expression in Xenopus cultured cells and embryos. Sequence analysis revealed that protein encoded by the hsp47 cDNA exhibited 70-77% identity with fish, avian and mammalian HSP47. In A6 kidney epithelial cells hsp47 mRNA and HSP47 were present constitutively and inducible by heat shock but not ER stressors including tunicamycin and A23187, both of which enhanced BiP mRNA. Furthermore A23187 treatment inhibited constitutive accumulation of hsp47 mRNA and retarded heat-induced accumulation of hsp47 and hsp70 mRNA. Interestingly, hsp47 gene expression but not hsp70 or BiP mRNA accumulation was enhanced by treatment with a procollagen-specific stressor, beta-aminopropionitrile. In Xenopus embryos hsp47 mRNA was present constitutively throughout development. In tailbud embryos hsp47 mRNA was enriched in tissues associated with collagen production including notochord, somites and head region. Heat shock-induced accumulation of hsp47 mRNA was enhanced primarily in embryonic tissues already exhibiting hsp47 mRNA accumulation. These studies suggest that the pattern of Xenopus hsp47 gene expression is similar to hsp70 in response to heat shock but also displays unique features including a response to a procollagen-specific stressor and preferential expression in collagen-containing tissues.  相似文献   

12.
Four complete hsp 30 genes have been isolated from Xenopus laevis: hsp 30A, hsp 30B (a pseudogene), hsp 30C, and hsp 30D. The hsp 30A and hsp 30C genes are first heat inducible at the early tailbud stage, as determined by RNase protection and RT-PCR assays. In this study, we determined by RT-PCR that the hsp 30D gene was first heat inducible (33oC for 1 h) at the mid-tailbud stage, approximately 1 day later in development than hsp 30A and hsp 30C. Furthermore, using Northern blot analysis, we detected the presence of very low levels of hsp 30 mRNA at the heat-shocked late blastula stage. The relative levels of these pre-tailbud (PTB) hsp 30 mRNAs increased at the gastrula and neurula stage followed by a dramatic enhancement in heat shocked tail-bud and tadpole stage embryos (50- to 100- fold relative to late blastula). Interestingly, treatment of blastula or gastrula embryos at high temperatures (37oC for 1 h) or with the protein synthesis inhibitor, cycloheximide, followed by heat shock, led to enhanced accumulation of the pre-tailbud (PTB) hsp 30 mRNAs. hsp 70, hsp 87, and actin messages were not stabilized at high temperatures or by cycloheximide treatment. Finally, hsp 30D mRNA was not detected by RT-PCR analysis of cycloheximidetreated, heat-shocked blastula stage embryos, confirming that it is not a member of the PTB hsp 30 mRNAs. This study indicates that differential gene expression and mRNA stability are involved in the regulation of hsp 30 gene expression during early Xenopus laevis development. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Small heat shock proteins (shsps) act as molecular chaperones by preventing heat-induced aggregation and unfolding of cellular proteins by a mechanism that is still unclear. Previously we found that the C-terminal end of Xenopus shsp, hsp30C (30C), was essential for optimal chaperone activity. Examination of the C-terminal tail of 30C revealed that it had a net negative charge. Involvement of this negative charge in chaperone activity was assessed by the creation of two mutants, D209G (Asp converted to the more neutrally charged and less polar Gly at position 209) and D209/213G (Asp to Gly at position 209 and 213). Compared to 30C and D209G, D209/213G was impaired in inhibiting heat-induced citrate synthase aggregation. In rabbit reticulocyte lysate and Xenopus oocyte microinjection refolding assays the mutants were not as efficient as 30C in maintaining heat-treated luciferase in a folding competent state. Circular dichroism analysis revealed that D209G was similar in secondary structure to 30C whereas D209/213G displayed a loss of alpha-helical-like and beta-sheet structure. Also, C-terminal truncation of 30C or 30D (an hsp30 isoform) resulted in a loss of secondary structure and function. This study clearly shows that mutation of aspartic acid residues in the C-terminal end of hsp30 or its truncation disrupts secondary structure and impairs its chaperone activity.  相似文献   

14.
Small heat shock proteins protect cells from stress presumably by acting as molecular chaperones. Here we report on the functional characterization of a developmentally regulated, heat-inducible member of the Xenopus small heat shock protein family, Hsp30C. An expression vector containing the open reading frame of the Hsp30C gene was expressed in Escherichia coli. These bacterial cells displayed greater thermoresistance than wild type or plasmid-containing cells. Purified recombinant protein, 30C, was recovered as multimeric complexes which inhibited heat-induced aggregation of either citrate synthase or luciferase as determined by light scattering assays. Additionally, 30C attenuated but did not reverse heat-induced inactivation of enzyme activity. In contrast to an N-terminal deletion mutant, removal of the last 25 amino acids from the C-terminal end of 30C severely impaired its chaperone activity. Furthermore, heat-treated concentrated solutions of the C-terminal mutant formed nonfunctional complexes and precipitated from solution. Immunoblot and gel filtration analysis indicated that 30C binds with and maintains the solubility of luciferase preventing it from forming heat-induced aggregates. Coimmunoprecipitation experiments suggested that the carboxyl region is necessary for 30C to interact with target proteins. These results clearly indicate a molecular chaperone role for Xenopus Hsp30C and provide evidence that its activity requires the carboxyl terminal region.  相似文献   

15.
Heat-shocked Xenopus embryos have an unusually complex heat shock response. The dominant heat shock protein (Hsp) has a relative molecular mass (Mr) of 62,000 D (Hsp62). Affinity-purified IgGs against the glycolytic enzyme pyruvate kinase (PK; EC 2.7.1.40) specifically immunoprecipitated Hsp62 from extracts of embryos that had been heat-shocked at 37°C for 30 min. Thus, Hsp62 and pyruvate kinase are immunologically cross-reacting. Electrophoretic separation of PK isoforms suggests that heat-shocked Xenopus embryos increase synthesis of an isoform of PK. Thermal denaturation studies suggest that this isoform has enhanced thermal stability. The identification of PK as an Hsp is discussed within the context of a physiological requirement for elevated levels of anaerobic glycolysis in heatstressed cells as a vital component of the acquisition of thermotolerance. © 1993Wiley-Liss, Inc.  相似文献   

16.
We examined the role of small Hsp genes (Hsp23 and Hsp40) and heat shock gene Hsr-omega in the thermoadaptation of Drosophila melanogaster inhabiting a highly heterogeneous microsite (Nahal Oren canyon, Carmel massif, Israel). We tested whether interslope differences in Drosophila thermoadaptation, revealed in our previous studies, are associated with the differential expression of these genes. Our results demonstrate an increased expression of the Hsp40 gene in thermotolerant lines subjected to mild heat shock treatment (P < 10(-6), analysis of variance test). A high positive correlation was found between the levels of Hsp40 expression and scores of basal (R = 0.74; P < 0.001, based on the Spearman rank correlation test) and induced thermotolerance (R = 0.78; P < 0.0001), implying a significant contribution of Hsp40 gene in thermoadaptation.  相似文献   

17.
Small Hsps represent a variation on the theme of protection of proteins from irreversible aggregation by reversible interaction with chaperone proteins. While different sHsps are highly heterogeneous in sequence and size, the common trait is the presence of a conserved alpha-crystallin domain. In addition sHsps assemble into large oligomeric complexes where dimers represent the basic building blocks. Hsp42, a member of the sHsp family in the cytosol of S. cerevisiae, forms ordered oligomers with a barrel-like structure. Here, we present the recombinant expression and purification of Hsp42. We demonstrate, that Hsp42 is expressed in inclusion bodies and can be resolubilized and folded to correct, active oligomers. This indicates that in contrast to thermal unfolding, the chemical disassembly and unfolding of Hsp42 is fully reversible. In comparison to the purification of mature Hsp42 from yeast, its recombinant expression leads to a substantial increase in the yield of the protein and to a reduction of contamination caused by aggregation prone proteins complexed by Hsp42. In addition, the recombinant Hsp42 is fully active as a chaperone in an energy independent manner.  相似文献   

18.
19.
In this study, we compared the effect of KNK437 (N-formyl-3, 4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat shock and chemical stressor-induced hsp30 gene expression in Xenopus laevis A6 kidney epithelial cells. Previously, KNK437 was shown to inhibit HSE-HSF1 binding activity and heat-induced hsp gene expression. In the present study, Northern and Western blot analysis revealed that pretreatment of A6 cells with KNK437 inhibited hsp30 mRNA and HSP30 and HSP70 protein accumulation induced by chemical stressors including sodium arsenite, cadmium chloride and herbimycin A. In A6 cells subjected to sodium arsenite, cadmium chloride, herbimycin A or a 33 degrees C heat shock treatment, immunocytochemistry and confocal microscopy revealed that HSP30 accumulated primarily in the cytoplasm. However, incubation of A6 cells at 35 degrees C resulted in enhanced HSP30 accumulation in the nucleus. Pre-treatment with 100 microM KNK437 completely inhibited HSP30 accumulation in A6 cells heat shocked at 33 or 35 degrees C as well as cells treated with 10 microM sodium arsenite, 100 microM cadmium chloride or 1 microg/mL herbimycin A. These results show that KNK437 is effective at inhibiting both heat shock- and chemical stress-induced hsp gene expression in amphibian cells.  相似文献   

20.
The alpha-crystallin-related, small heat shock proteins (sHsps), despite their overall variability in sequence, have discrete regions of conserved sequence that are involved in structural organization, as well as nonconserved regions that may perform similar roles in each protein. Recent X-ray diffraction analyses of an archeal and a plant sHsp have revealed both similarities and differences in how they are organized, suggesting that there is variability, particularly in the oligomeric organization of sHsps. As an adjunct to crystallographic analysis of sHsp structure, we employed the yeast 2-hybrid system to detect interactions between peptide regions of the sHsp of Neurospora crassa, Hsp30. We found that the conserved alpha-crystallin domain can be divided into N-terminal and C-terminal subdomains that interact strongly with one another. This interaction likely represents the tertiary contacts of the monomer that were visualized in the crystallographic structures of MjHsp16.5 and wheat Hsp16.9. The conserved sHsp monomeric fold is apparently determined by these regions of conserved sequence. We found that the C-terminal portion of the alpha-crystallin domain also interacts with itself in 2-hybrid assays; however, this interaction requires peptide extension into the semiconserved carboxyl tail. This C-terminal association may represent a principal contact site between dimers that contributes to higher-order assembly, as seen for the crystallized sHsps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号