首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Nup153 is a molecular constituent of the nuclear basket of the nuclear pore complex (NPC) that plays a critical role in nuclear export of RNAs and proteins. In an effort to map this nucleoporin more precisely within the nuclear basket we have developed an experimental approach for localizing Nup153 expressed and incorporated in vivo into Xenopus oocyte NPCs. This approach involves the microinjection into the cytoplasm of Xenopus oocytes of in vitro synthesized mRNA from a vector encoding an epitope-tagged cDNA. Here we present results obtained by Western blots, fluorescence microscopy, and immuno-electron microscopy, which clearly document that the heterologous protein is properly expressed, targeted, and incorporated into preexisting Xenopus NPCs. This new approach for localizing nucleoporins within the structure of the NPC overcomes limitations of previous techniques and allows for greater specificity and resolution than have been possible with previous methods.  相似文献   

4.
A cell-free system derived from Xenopus eggs enables in vitro reproduction of the steps occurring during eukaryotic DNA replication. With a circular single-stranded DNA template, extracts obtained from high-speed centrifugation perform complementary DNA strand synthesis coupled to chromatin assembly. Nucleosomes are formed on the newly replicated DNA and the overall reaction mimics the events occuring during chromosomal replication on the lagging strand at the replication fork. ATP is necessary at all steps examined individually, including RNA priming, elongation of DNA strands and chromatin assembly. Although not required for nucleosome formation, ATP is involved in the correct spacing of nucleosomes and the stability of the assembled chromatin. Replication of double-stranded DNA was observed only with extracts obtained from low-speed centrifugation using demembraned sperm nuclei as substrate. Nuclei are reconstituted around the DNA and then undergo a series of events characteristic of a cell cycle. In contrast, neither DNA elongation or chromatin assembly require formation of the nucleus, and both are independent of the cell cycle.  相似文献   

5.
The Xenopus early embryonic cell cycle consists of rapid oscillations between mitosis and DNA synthesis. We used ubiquitin (Ub)-dependent proteolysis inhibitors to determine whether Ub-mediated proteolysis regulates the initiation of DNA replication in Xenopus egg extract. Methylated Ub, a chemically modified Ub that cannot form chains, and S5a, a Ub chain-binding subunit of the 26S proteasome, were added to extract at concentrations known to inhibit cyclin B proteolysis and their effects on cell cycle progression and DNA replication were examined. DNA replication initiated concomitant with controls and proceeded in a semiconservative fashion in the presence of both methylated Ub and S5a. However, mitotic progression was halted, showing that the inhibitors were functional. We conclude that initiation of DNA replication is not regulated by Ub-dependent proteolysis in the early Xenopus cell cycle.  相似文献   

6.
Mesoderm migration is a well studied morphogenetic movement that takes place during Xenopus gastrulation. The study of mesoderm migration and other morphogenetic movements has been primarily based on in vitro assays due to the inability to image deep tissue movements in the opaque embryo. We are the first to report the use of Near Infra Red Quantum Dots (NIR QD’s) to image mesoderm migration in vivo with single cell resolution and provide quantitative in vivo data regarding migration rates. In addition we use QD’s to address the function of the focal adhesion kinase (FAK) in this movement. Inhibition of FAK blocks mesoderm spreading and migration both in vitro and in vivo without affecting convergent extension highlighting the molecular differences between the two movements. These results provide new insights about the role of FAK and of focal adhesions during gastrulation and provide a new tool for the study of morphogenesis in vivo.  相似文献   

7.
Nuclear pore complexes are rotationally symmetric structures that span the nuclear envelope and provide channels for nucleocytoplasmic traffic. These large complexes normally consist of eight spokes arranged around a central channel, although, occasionally, 9- and 10-fold nuclear pore complexes are found in preparations of Xenopus oocyte macronuclei. Here we examine these unusual nuclear pore complexes by negative stain electron microscopy and image analysis and compare the results with data previously obtained from 8-fold structures. The details in two-dimensional and three-dimensional maps indicate that the substructure of the spoke is the same in 8-, 9- and 10-fold nuclear pore complexes: therefore, the spoke is likely an immutable structural component. In all three variant forms, the spacing between adjacent annular subunits, which surround the central channel, is identical. Distances between spokes at higher radius decrease in the 9- and 10-fold nuclear pore complexes. These data imply that the most important connections holding the nuclear pore complex together are those between adjacent annular subunits and that these interactions may play a predominant role in nuclear pore complex assembly. Circumferential connections mediated by ring subunits and radial arms presumably further stabilize the structure and are flexible enough to accommodate additional spokes.  相似文献   

8.
9.
Zeins, maize storage proteins, are retained in the endoplasmic reticulum (ER) during the intracellular protein targeting process. Hydrophobic interaction has been postulated as the driving force of zeins' aggregation and retention in the ER. Recently, a class of zein (the 27K zein) has been proposed to facilitate zeins' ER retention by anchoring to the ER membrane. This study investigated the significance of the two proposed mechanisms toward zeins' ER retention using Xenopus oocyte. Following injection of the total or 27K zein mRNA, zein's movement within the ER was analyzed based upon the extent of diffusion to the non-injected oocyte half. This study indicates that the total zeins freely move within the lumen of the ER, thus, suggesting that the intermolecular aggregation, leading to insolubility and exclusion from the ER lumenal fluid, may not be essential for zeins' ER retention. This study also suggests that the 27K zein may not facilitate zeins' ER retention by virtue of an anchor to the ER membrane based on its free movement in the ER. Free movement of the total and 27K zeins, under conditions where zein aggregates should form, necessitates a reevaluation of the mechanisms responsible for zein polypeptides' ER retention and protein body formation.  相似文献   

10.
核心薄囊蕨是蕨类植物中的进化类群,但对受精作用具有显著影响的卵发生研究仍较少,该文利用超微技术对其中蹄盖蕨科的华东安蕨卵发生过程进行了研究,以进一步完善薄囊蕨植物卵发生的科学资料,为理解蕨类植物的有性生殖及演化机制奠定基础。超微结构观察显示:华东安蕨的幼卵和沟细胞在颈卵器中紧密联接;随后,在卵细胞上方出现了分离腔和临时细胞壁,但在卵细胞中间孔区处卵细胞和腹沟细胞始终联接在一起;分离腔中的无定形物质沉积在卵细胞的质膜外形成了1层加厚的卵膜,而在孔区处没有形成卵膜,该位置最后形成了受精孔。在进一步的卵发生过程中,卵细胞核变得高度不规则,形成了大量的核外突和核褶皱。  相似文献   

11.
The yeast Saccharomyces cerevisiae is a common model organism for biological discovery. It has become popularized primarily because it is biochemically and genetically amenable for many fundamental studies on eukaryotic cells. These features, as well as the development of a number of procedures and reagents for isolating protein complexes, and for following macromolecules in vivo, have also fueled studies on nucleo-cytoplasmic transport in yeast. One limitation of using yeast to study transport has been the absence of a reconstituted in vitro system that yields quantitative data. However, advances in microscopy and data analysis have recently enabled quantitative nuclear import studies, which, when coupled with the significant advantages of yeast, promise to yield new fundamental insights into the mechanisms of nucleo-cytoplasmic transport.  相似文献   

12.
13.
Rat basophilic leukemia cells (RBL-2H3) have previously been shown to contain a single type of voltage-activated channel, namely an inwardly rectifying K+ channel, under normal recording conditions. Thus, RBL-2H3 cells seemed like a logical source of mRNA for the expression cloning of inwardly rectifying K+ channels. Injection of mRNA isolated from RBL-2H3 cells into Xenopus oocytes resulted in the expression of an inward current which (1) activated at potentials negative to the K+ equilibrium potential (EK), (2)decreased in slope conductance near EK, (3) was dependent on [K+]o and (4) was blocked by external Ba2+ and Cs+. These properties were similar to those of the inwardly rectifying K+ current recorded from RBL-2H3 cells using whole-cell voltage clamp. Injection of size-fractionated mRNA into Xenopus oocytes revealed that the current was most strongly expressed from the fraction containing mRNA of approximately 4–5 kb. Expression of this channel represents a starting point for the expression cloning of a novel class of K+ channels.  相似文献   

14.
In fission yeast the Weel kinase and the functionally redundant Mikl kinase provide a regulatory mechanism to ensure that mitosis is initiated only after the completion of DNA synthesis. Yeast in which both Weel and Mik1 kinases are defective exhibit a mitotic catastrophe phenotype, presumably due to premature entry into mitosis. Because of the functional conservation of cell cycle control elements, the expression of a vertebrate weel or mikl homolog would be expected to rescue such lethal mutations in yeast. A Xenopus total ovary cDNA library was constructed in a fission yeast expression vector and used to transform a yeast temperature-dependent mitotic catastrophe mutant defective in both weel and mikl. Here we report the identification of a Xenopus cDNA clone that can rescue several different yeast mitotic catastrophe mutants defective in Weel kinase function. The expression of this clone in a weel/mikl-deficient mutant causes an elongated cell phenotype under non-permissive growth conditions. The 2.0 kb cDNA clone contains an open reading frame of 1263 nucleotides, encoding a predicted 47 kDa protein. Bacterially expressed recombinant protein was used to raise a polyclonal antibody, which specifically recognizes a 47 kDa protein from Xenopus oocyte nuclei, suggesting the gene encodes a nuclear protein in Xenopus. The ability of this cDNA to complement mitotic catastrophe mutations is independent of Weel kinase activity.  相似文献   

15.
Xenopus egg extracts provide a powerful tool for studying the formation and function of chromosomes. Two alternative protocols are generally used to obtain mitotic chromosomes. The first one uses a direct chromatin assembly from sperm nuclei in cytostatic factor (CSF)-arrested meiotic extracts, while the second is based on transition of sperm DNA through a replication step with subsequent reestablishment of CSF arrest. In this study we show that general kinetochore structure is disrupted in chromosomes assembled directly in CSF egg extracts: The amounts of outer kinetochore proteins such as Bub1, BubR1, and Dynactin subunit p150glued are reduced and the components of the inner centromeric region (Aurora B kinase and Survivin) show compromised recruitment to centromeres. On the contrary, kinetochores on chromosomes assembled according to the second protocol closely resemble those in somatic cells. Our results indicate that the transition of sperm nuclei through interphase is an essential step for proper kinetochore assembly.  相似文献   

16.
17.
Nuclear pore complexes (NPCs) are gateways for transport between the nucleus and cytoplasm of eukaryotic cells and play crucial roles in regulation of gene expression. NPCs are composed of multiple copies of ∼ 30 different nucleoporins (nups) that display both ubiquitous and cell type specific functions during development. Vertebrate Nup35 (also known as Nup53) was previously described to interact with Nup93, Nup155 and Nup205 and to be required for nuclear envelope (NE) assembly in vitro. Here, we report the first in vivo characterization of a Nup35 mutation, npp-19(tm2886), and its temperature-dependent effects on Caenorhabditis elegans embryogenesis. At restrictive temperature, npp-19(tm2886) embryos exhibit chromosome missegregation, nuclear morphology defects and die around mid-gastrulation. Depletion of Nup35/NPP-19 inhibits NE localization of Nup155/NPP-8, NPC assembly and nuclear lamina formation. Consequently, nuclear envelope function, including nucleo-cytoplasmic transport, is impaired. In contrast, recruitment of Nup107/NPP-5, LEM-2 and nuclear membranes to the chromatin surface is Nup35/NPP-19-independent, suggesting an uncoupling of nuclear membrane targeting and NPC assembly in the absence of Nup35/NPP-19. We propose that Nup35/NPP-19 has an evolutionary conserved role in NE formation and function, and that this role is particularly critical during the rapid cell divisions of early embryogenesis.  相似文献   

18.
Nuclei from terminally differentiated Xenopus erythrocytes lack essential components of the prereplication complex, including the origin recognition complex (ORC) proteins XORC1 and XORC2. In Xenopus egg extract, these proteins are able to bind erythrocyte chromatin from permeable nuclei, but not from intact nuclei, even though they are able to cross an intact nuclear envelope. In this report we use both permeable and intact erythrocyte nuclei to investigate the role of cyclin-dependent kinase activity in modulating the binding of XORC2 to chromatin. We find that elevating the level of cyclin A-dependent kinase in egg extract prevents the binding of XORC2 to chromatin from permeable nuclei and that kinase inhibition reverses this effect. We also observe a nuclear transport-dependent accumulation of H1 kinase activity within intact nuclei incubated in the extract. However, inhibiting this kinase activity does not facilitate the binding of XORC2 to chromatin, suggesting that other molecules and/or mechanisms exist to prevent association of XORC proteins with replication origins within intact nuclei from terminally differentiated cells.  相似文献   

19.
Shallow injection of inositol 1,4,5-trisphosphate (IP3) near the animal pole of the Xenopus oocyte resulted in a large depolarizing current that decayed rapidly. A similar injection near the vegetal pole produced a much smaller response characterized by a significantly slower rate of decay. Injection of CaCl2 near the animal pole of the oocyte resulted in a large depolarizing current characterized by rapid rise and decay times. Injection near the vegetal pole of the cell produced responses that exhibited similar amplitudes but much longer rise and decay times. The protein kinase C (PK-C) activator, β-phorbol 12-myristate 13-acetate (PMA), significantly enhanced the rapid responses to IP3 injections at either hemisphere but did not affect the amplitudes of the responses to CaCl2. The PK-C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) had no effect on the responses to CaCl2. These results imply an asymmetric distribution of calcium stores and chloride channels between the two hemispheres of the oocyte.  相似文献   

20.
L. Hellgren  D. J. Morré 《Protoplasma》1992,167(3-4):238-242
Summary Fractions enriched in intact nuclei and nuclear fragments isolated from etiolated hypocotyls of soybean responded in vitro to ATP plus a concentrated fraction of cytoplasmic proteins by formation of ca. 50–70 nm buds and vesicles resembling those observed to bud from the outer membrane of the nuclear envelope in situ at regions of nuclear envelope-Golgi apparatus interface. Similar vesicles are normally considered to function in the transfer of materials from the outer membrane of the nuclear envelope to cis elements of the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号