首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Walker D  Moore GR  James R  Kleanthous C 《Biochemistry》2003,42(14):4161-4171
Colicin E3 is a 60 kDa, multidomain protein antibiotic that targets its ribonuclease activity to an essential region of the 16S ribosomal RNA of Escherichia coli. To prevent suicide of the producing cell, synthesis of the toxin is accompanied by the production of a 10 kDa immunity protein (Im3) that binds strongly to the toxin and abolishes its enzymatic activity. In the present work, we study the interaction of Im3 with the isolated cytotoxic domain (E3 rRNase) and intact colicin E3 through presteady-state kinetics and thermodynamic measurements. The isolated E3 rRNase domain forms a high affinity complex with Im3 (K(d) = 10(-12) M, in 200 mM NaCl at pH 7.0 and 25 degrees C). The interaction of Im3 with full-length colicin E3 under the same conditions is however significantly stronger (K(d) = 10(-14) M). The difference in affinity arises almost wholly from a marked decrease in the dissociation rate constant for the full-length complex (8 x 10(-7) s(-1)) relative to the E3 rRNase-Im3 complex (1 x 10(-4) s(-1)), with their association rates comparable ( approximately 10(8) M(-1) s(-1)). Thermodynamic measurements show that complex formation is largely enthalpy driven. In light of the recently published crystal structure of the colicin E3-Im3 complex, the additional stabilization of the wild-type complex can be ascribed to the interaction of Im3 with the N-terminal translocation domain of the toxin. These observations suggest a mechanism whereby dissociation of the immunity protein prior to translocation into the target cell is facilitated by the loss of the Im3-translocation domain interaction.  相似文献   

2.
BACKGROUND: Colicins are antibiotic-like proteins of Escherichia coli that kill related strains. Colicin E3 acts as an RNase that specifically cleaves 16S rRNA, thereby inactivating the ribosomes in the infected cell. The producing organism is protected against colicin E3 by a specific inhibitor, the immunity protein Im3, which forms a tight 1:1 complex with colicin E3 and renders it inactive. Crystallographic studies on colicin E3 and Im3 have been undertaken to unravel the structural basis for the ribonucleolytic activity and its inhibition. RESULTS: The crystal structure of Im3 has been determined to a resolution of 1.8 A. The structure consists of a four-standard antiparallel beta sheet flanked by three alpha helices on one side of the sheet. Thr7, Phe9, Phe16 and Phe74 form a hydrophobic cluster on the surface of the protein in the vicinity of Cys47. This cluster is part of a putative binding pocket which also includes nine polar residues. CONCLUSIONS: The putative binding pocket of Im3 is the probable site of interaction with colicin E3. The six acidic residues in the pocket may interact with some of the numerous basic residues of colicin E3. The involvement of hydrophobic moieties in the binding is consistent with the observation that the tight complex can only be dissociated by denaturation. The structure of Im3 resembles those of certain nucleic acid binding proteins, in particular domain II of topoisomerase I and RNA-binding proteins that contain the ribonucleoprotein (RNP) sequence motif. This observation suggests that Im3 has a nucleic acid binding function in addition to binding colicin E3.  相似文献   

3.
Nano-electrospray ionization time-of-flight mass spectrometry (ESI-MS) was used to study the conformational consequences of metal ion binding to the colicin E9 endonuclease (E9 DNase) by taking advantage of the unique capability of ESI-MS to allow simultaneous assessment of conformational heterogeneity and metal ion binding. Alterations of charge state distributions on metal ion binding/release were correlated with spectral changes observed in far- and near-UV circular dichroism (CD) and intrinsic tryptophan fluorescence. In addition, hydrogen/deuterium (H/D) exchange experiments were used to probe structural integrity. The present study shows that ESI-MS is sensitive to changes of the thermodynamic stability of E9 DNase as a result of metal ion binding/release in a manner consistent with that deduced from proteolysis and calorimetric experiments. Interestingly, acid-induced release of the metal ion from the E9 DNase causes dramatic conformational instability associated with a loss of fixed tertiary structure, but secondary structure is retained. Furthermore, ESI-MS enabled the direct observation of the noncovalent protein complex of E9 DNase bound to its cognate immunity protein Im9 in the presence and absence of Zn(2+). Gas-phase dissociation experiments of the deuterium-labeled binary and ternary complexes revealed that metal ion binding, not Im9, results in a dramatic exchange protection of E9 DNase in the complex. In addition, our metal ion binding studies and gas-phase dissociation experiments of the ternary E9 DNase-Zn(2+)-Im9 complex have provided further evidence that electrostatic interactions govern the gas phase ion stability.  相似文献   

4.
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was approximately 2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates approximately 2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.  相似文献   

5.
RNase II and RNase R are the two E. coli exoribonucleases that belong to the RNase II super family of enzymes. They degrade RNA hydrolytically in the 3' to 5' direction in a processive and sequence independent manner. However, while RNase R is capable of degrading structured RNAs, the RNase II activity is impaired by dsRNAs. The final end-product of these two enzymes is also different, being 4 nt for RNase II and 2 nt for RNase R. RNase II and RNase R share structural properties, including 60% of amino acid sequence similarity and have a similar modular domain organization: two N-terminal cold shock domains (CSD1 and CSD2), one central RNB catalytic domain, and one C-terminal S1 domain. We have constructed hybrid proteins by swapping the domains between RNase II and RNase R to determine which are the responsible for the differences observed between RNase R and RNase II. The results obtained show that the S1 and RNB domains from RNase R in an RNase II context allow the degradation of double-stranded substrates and the appearance of the 2 nt long end-product. Moreover, the degradation of structured RNAs becomes tail-independent when the RNB domain from RNase R is no longer associated with the RNA binding domains (CSD and S1) of the genuine protein. Finally, we show that the RNase R C-terminal Lysine-rich region is involved in the degradation of double-stranded substrates in an RNase II context, probably by unwinding the substrate before it enters into the catalytic cavity.  相似文献   

6.
The amino-terminal domains N1 and N2 of the gene-3-protein of phage fd form a bilobal structural and functional entity that protrudes from the phage tip. Domain N2 initiates the infection of Escherichia coli by binding to the F pilus. This binding results in the dissociation of the two domains and allows N1 to interact with the TolA receptor at the cell surface. The refolding of the N1-N2 fragment begins with the folding of domain N1, which takes a few milliseconds, followed by the folding of domain N2, which is complete within five minutes. The subsequent domain assembly is unusually slow and shows a time-constant of 6200 s at 25 degrees C. We found that the rate of this reaction is controlled by the trans to cis isomerization of the Gln212-Pro213 bond in the hinge subdomain of N2, a region that provides many interactions between N1 and N2 in the gene-3-protein. The substitution of Pro213 by Gly accelerated domain association 30-fold and revealed that the folding of the two individual domains and their assembly are indeed sequential steps in the refolding of the gene-3-protein. In the course of infection, the domains must separate to expose the binding site for TolA on domain N1. The kinetic block of domain reassembly caused by Pro213 isomerization could ensure that after the initial binding of N2 to the F pilus the open state persists until N1 and TolA are close enough for their mutual interaction. Pro213 isomerization might thus serve as a slow conformational switch in the function of the gene-3-protein.  相似文献   

7.
S1 domains occur in four of the major enzymes of mRNA decay in Escherichia coli: RNase E, PNPase, RNase II, and RNase G. Here, we report the structure of the S1 domain of RNase E, determined by both X-ray crystallography and NMR spectroscopy. The RNase E S1 domain adopts an OB-fold, very similar to that found with PNPase and the major cold shock proteins, in which flexible loops are appended to a well-ordered five-stranded beta-barrel core. Within the crystal lattice, the protein forms a dimer stabilized primarily by intermolecular hydrophobic packing. Consistent with this observation, light-scattering, chemical crosslinking, and NMR spectroscopic measurements confirm that the isolated RNase E S1 domain undergoes a specific monomer-dimer equilibrium in solution with a K(D) value in the millimolar range. The substitution of glycine 66 with serine dramatically destabilizes the folded structure of this domain, thereby providing an explanation for the temperature-sensitive phenotype associated with this mutation in full-length RNase E. Based on amide chemical shift perturbation mapping, the binding surface for a single-stranded DNA dodecamer (K(D)=160(+/-40)microM) was identified as a groove of positive electrostatic potential containing several exposed aromatic side-chains. This surface, which corresponds to the conserved ligand-binding cleft found in numerous OB-fold proteins, lies distal to the dimerization interface, such that two independent oligonucleotide-binding sites can exist in the dimeric form of the RNase E S1 domain. Based on these data, we propose that the S1 domain serves a dual role of dimerization to aid in the formation of the tetrameric quaternary structure of RNase E as described by Callaghan et al. in 2003 and of substrate binding to facilitate RNA hydrolysis by the adjacent catalytic domains within this multimeric enzyme.  相似文献   

8.
The dissociation rate constant of the angiogenin-placental ribonuclease inhibitor complex was determined by measuring the release of free angiogenin from the complex in the presence of scavenger for free placental ribonuclease inhibitor (PRI). In 0.1 M NaCl, pH 6, 25 degrees C, this value is 1.3 X 10(-7) s-1 (t1/2 congruent to 60 days). The Ki value for the binding of PRI to angiogenin, calculated from the association and dissociation rate constants, is 7.1 X 10(-16) M. The corresponding values for the interaction of RNase A with PRI, determined by similar means, are both considerably higher: the dissociation rate constant is 1.5 X 10(-5) s-1 (t1/2 = 13 h), and the Ki value is 4.4 X 10(-14) M. Thus, PRI binds about 60 times more tightly to angiogenin than to RNase A. The effect of increasing sodium chloride concentration on the binding of PRI to RNase A was explored by Henderson plots. The Ki value increases to 39 pM in 0.5 M NaCl and to 950 pM in 1 M NaCl, suggesting the importance of ionic interactions. The mode of inhibition of RNase A by PRI was determined by examining the effect of a competitive inhibitor of RNase A, cytidine 2'-phosphate, on the association rate of PRI with RNase A. Increasing concentrations of cytidine 2'-phosphate decrease the association rate in a manner consistent with a competitive mode of inhibition.  相似文献   

9.
10.
The pestivirus envelope glycoprotein E(rns) has RNase activity and therefore was suspected to enter cells to cleave RNA. The protein contains an RNase domain with a C-terminal extension, which shows homology with a membrane-active peptide. The modular architecture and the C-terminal homology suggested that the C terminus could be responsible for the presumed translocation. Peptides corresponding to the C-terminal domain of E(rns) and also the homologous L3 loop of ribotoxin II were indeed able to translocate across the eukaryotic cell membrane and were targeted to the nucleoli. The entire E(rns) protein was also able to translocate into the cell. Furthermore, other labeled proteins and even active enzymes could be transported inside the cell when they were attached to the C-terminal E(rns) peptide. Translocation was energy-independent and not mediated by a protein receptor. The peptides showed no specificity for cell type or species.  相似文献   

11.
Ribonuclease (RNase) P is a site‐specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix‐loop‐helix protein‐binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 Å. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.  相似文献   

12.
We explore the thermodynamic strategies used to achieve specific, high-affinity binding within a family of conserved protein-protein complexes. Protein-protein interactions are often stabilized by a conserved interfacial hotspot that serves as the anchor for the complex, with neighboring variable residues providing specificity. A key question for such complexes is the thermodynamic basis for specificity given the dominance of the hotspot. We address this question using, as our model, colicin endonuclease (DNase)-immunity (Im) protein complexes. In this system, cognate and noncognate complexes alike share the same mechanism of association and binding hotspot, but cognate complexes (K(d) approximately 10(-)(14) M) are orders of magnitude more stable than noncognate complexes (10(6)-10(10)-fold discrimination), largely because of a much slower rate of dissociation. Using isothermal titration calorimetry (ITC), we investigated the changes in enthalpy (DeltaH), entropy (-TDeltaS), and heat capacity (DeltaC(p)) accompanying binding of each Im protein (Im2, Im7, Im8, and Im9) to the DNase domains of colicins E2, E7, E8, and E9, in the context of both cognate and noncognate complexes. The data show that specific binding to the E2, E7, and E8 DNases is enthalpically driven but entropically driven for the E9 DNase. Analysis of DeltaC(p), a measure of the change in structural fluctuation upon complexation, indicates that E2, E7, and E8 DNase specificity is coupled to structural changes within cognate complexes that are consistent with a reduction in the conformational dynamics of these complexes. In contrast, E9 DNase specificity appears coupled to the exclusion of water molecules, consistent with the nonpolar nature of the interface of this complex. The work highlights that although protein-protein interactions may be centered on conserved structural epitopes the thermodynamic mechanism underpinning binding specificity can vary considerably.  相似文献   

13.
Uniquely amongst vitamin K-dependent coagulation proteins, protein C interacts via its Gla domain both with a receptor, the endothelial cell protein C receptor (EPCR), and with phospholipids. We have studied naturally occurring and recombinant protein C Gla domain variants for soluble (s)EPCR binding, cell surface activation to activated protein C (APC) by the thrombin-thrombomodulin complex, and phospholipid dependent factor Va (FVa) inactivation by APC, to establish if these functions are concordant. Wild-type protein C binding to sEPCR was characterized with surface plasmon resonance to have an association rate constant of 5.23 x 10(5) m(-1).s(-1), a dissociation rate constant of 7.61 x 10(-2) s(-1) and equilibrium binding constant (K(D)) of 147 nm. It was activated by thrombin over endothelial cells with a K(m) of 213 nm and once activated to APC, rapidly inactivated FVa. Each of these interactions was dramatically reduced for variants causing gross Gla domain misfolding (R-1L, R-1C, E16D and E26K). Recombinant variants Q32A, V34A and D35A had essentially normal functions. However, R9H and H10Q/S11G/S12N/D23S/Q32E/N33D/H44Y (QGNSEDY) variants had slightly reduced (< twofold) binding to sEPCR, arising from an increased rate of dissociation, and increased K(m) (358 nm for QGNSEDY) for endothelial cell surface activation by thrombin. Interestingly, these variants had greatly reduced (R9H) or greatly enhanced (QGNSEDY) ability to inactivate FVa. Therefore, protein C binding to sEPCR and phospholipids is broadly dependent on correct Gla domain folding, but can be selectively influenced by judicious mutation.  相似文献   

14.
15.
Shin E  Go H  Yeom JH  Won M  Bae J  Han SH  Han K  Lee Y  Ha NC  Moore CJ  Sohlberg B  Cohen SN  Lee K 《Genetics》2008,179(4):1871-1879
RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell. To better understand the molecular mechanisms of RNase E action, we performed a genetic screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that knock down the ability of RNase E to support survival of E. coli. Comparative phylogenetic analysis of RNase E homologs shows that wild-type residues at these mutated positions are nearly invariably conserved. Cells conditionally expressing these N-Rne mutants in the absence of wild-type RNase E show a decrease in copy number of plasmids regulated by the RNase E substrate RNA I, and accumulation of 5S ribosomal RNA, M1 RNA, and tRNA(Asn) precursors, as has been found in Rne-depleted cells, suggesting that the inability of these mutants to support cellular growth results from loss of ribonucleolytic activity. Purified mutant proteins containing an amino acid substitution in the DNase I subdomain, which is spatially distant from the catalytic site posited from crystallographic studies, showed defective binding to an RNase E substrate, p23 RNA, but still retained RNA cleavage activity-implicating a previously unidentified structural motif in the DNase I subdomain in the binding of RNase E to targeted RNA molecules, demonstrating the role of the DNase I domain in RNase E activity.  相似文献   

16.
The RNase H domain from HIV-1 (HIV RNase H) encodes an essential retroviral activity. Refolding of the isolated HIV RNase H domain shows a kinetic intermediate detectable by stopped-flow far UV circular dichroism and pulse-labeling H/D exchange. In this intermediate, strands 1, 4, and 5 as well as helices A and D appear to be structured. Compared to its homolog from Escherichia coli, the rate limiting step in refolding of HIV RNase H appears closer to the native state. We have modeled this kinetic intermediate using a C-terminal deletion fragment lacking helix E. Like the kinetic intermediate, this variant folds rapidly and shows a decrease in stability. We propose that inhibition of the docking of helix E to this folding intermediate may present a novel strategy for anti HIV-1 therapy.  相似文献   

17.
The Escherichia coli protein RhlB is an ATP-dependent motor that unfolds structured RNA for destruction by partner ribonucleases. In E. coli, and probably many other related gamma-proteobacteria, RhlB associates with the essential endoribonuclease RNase E as part of the multi-enzyme RNA degradosome assembly. The interaction with RNase E boosts RhlB's ATPase activity by an order of magnitude. Here, we examine the origins and implications of this effect. The location of the interaction sites on both RNase E and RhlB are refined and analysed using limited protease digestion, domain cross-linking and homology modelling. These data indicate that RhlB's carboxy-terminal RecA-like domain engages a segment of RNase E that is no greater than 64 residues. The interaction between RhlB and RNase E has two important consequences: first, the interaction itself stimulates the unwinding and ATPase activities of RhlB; second, RhlB gains proximity to two RNA-binding sites on RNase E, with which it cooperates to unwind RNA. Our homology model identifies a pattern of residues in RhlB that may be key for recognition of RNase E and which may communicate the activating effects. Our data also suggest that the association with RNase E may partially repress the RNA-binding activity of RhlB. This repression may in fact permit the interplay of the helicase and adjacent RNA binding segments as part of a process that steers substrates to either processing or destruction, depending on context, within the RNA degradosome assembly.  相似文献   

18.
Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.  相似文献   

19.
Mammalian synapse-associated protein SAP97, a structural and functional homolog of Drosophila Dlg, is a membrane-associated guanylate kinase (MAGUK) that is present at pre- and postsynaptic sites as well as in epithelial cell-cell contact sites. It is a multidomain scaffolding protein that shares with other members of the MAGUK protein family a characteristic modular organization composed of three sequential protein interaction motifs known as PDZ domains, followed by an Src homology 3 (SH3) domain, and an enzymatically inactive guanylate kinase (GK)-like domain. Specific binding partners are known for each domain, and different modes of intramolecular interactions have been proposed that particularly involve the SH3 and GK domains and the so-called HOOK region located between these two domains. We identified the HOOK region as a specific site for calmodulin binding and studied the dynamics of complex formation of recombinant calmodulin and SAP97 by surface plasmon resonance spectroscopy. Binding of various SAP97 deletion constructs to immobilized calmodulin was strictly calcium-dependent. From the rate constants of association and dissociation we determined an equilibrium dissociation constant K(d) of 122 nm for the association of calcium-saturated calmodulin and a SAP97 fragment, which encompassed the entire SH3-HOOK-GK module. Comparative structure-based sequence analysis of calmodulin binding regions from various target proteins predicts variable affinities for the interaction of calmodulin with members of the MAGUK protein family. Our findings suggest that calmodulin could regulate the intramolecular interaction between the SH3, HOOK, and GK domains of SAP97.  相似文献   

20.
Tadokoro T  Chon H  Koga Y  Takano K  Kanaya S 《The FEBS journal》2007,274(14):3715-3727
The gene encoding a bacterial type 1 RNase H, termed RBD-RNase HI, was cloned from the psychrotrophic bacterium Shewanella sp. SIB1, overproduced in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RBD-RNase HI consists of 262 amino acid residues and shows amino acid sequence identities of 26% to SIB1 RNase HI, 17% to E. coli RNase HI, and 32% to human RNase H1. SIB1 RBD-RNase HI has a double-stranded RNA binding domain (RBD) at the N-terminus, which is commonly present at the N-termini of eukaryotic type 1 RNases H. Gel mobility shift assay indicated that this domain binds to an RNA/DNA hybrid in an isolated form, suggesting that this domain is involved in substrate binding. SIB1 RBD-RNase HI exhibited the enzymatic activity both in vitro and in vivo. Its optimum pH and metal ion requirement were similar to those of SIB1 RNase HI, E. coli RNase HI, and human RNase H1. The specific activity of SIB1 RBD-RNase HI was comparable to that of E. coli RNase HI and was much higher than those of SIB1 RNase HI and human RNase H1. SIB1 RBD-RNase HI showed poor cleavage-site specificity for oligomeric substrates. SIB1 RBD-RNase HI was less stable than E. coli RNase HI but was as stable as human RNase H1. Database searches indicate that several bacteria and archaea contain an RBD-RNase HI. This is the first report on the biochemical characterization of RBD-RNase HI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号