首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
The steroid hormone, 20-hydroxyecdysone (20E), directs Drosophila metamorphosis via a heterodimeric receptor formed by two members of the nuclear hormone receptors superfamily, the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. Our previous study [Niedziela-Majka, A., Kochman, M., Ozyhar, A. (2000) Eur. J. Biochem. 267, 507-519] on EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) suggested that UspDBD may act as a specific anchor that preferentially binds the 5' half-site of the pseudo-palindromic response element from the hsp27 gene promoter and thus locates the heterocomplex in the defined orientation. Here, we analyzed in detail the determinants of the UspDBD interaction with the hsp27 element. The roles of individual amino acids in the putative DNA recognition alpha helix and the roles of the base pairs of the UspDBD target sequence have been probed by site-directed mutagenesis. The results show how the hsp27 element specifies UspDBD binding and thus the polar assembly of the UspDBD/EcRDBD heterocomplex. It is suggested how possible nucleotide deviations within the 5' half-site of the element may be used for the fine-tuning of the 20E-response element specificity and consequently the physiological response.  相似文献   

2.
Ecdysteroids control molting and metamorphosis in insects via a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and ultraspiracle protein (Usp). We used fluorescence resonance energy transfer (FRET) to study the topology of the natural pseudopalindromic element from the hsp27 gene (hsp27pal) in complex with the DNA-binding domains of Usp and EcR (UspDBD and EcRDBD, respectively). Steady-state data revealed shortening of the end-to-end distance of the hsp27pal-derived probe. For the 70.8 +/- 0.6 A distance obtained for the UspDBD-complexed DNA a bend of about 23.1 +/- 2.9 degrees was measured. Nearly the same value (23.0 +/- 3.4 degrees) was obtained for the DNA complexed with the UspDBD/EcRDBD heterodimer. The respective bend angles estimated using fluorescence decay measurements were 19.0 +/- 2.1 degrees and 20.9 +/- 3.6 degrees . Thus, the FRET data suggest for the first time that the UspDBD defines the architecture of the UspDBD/EcRDBD heterocomplex due to the significant deformation of the hsp27pal. This suggestion has been further reinforced using gel retardation experiments, which, in conjunction with high-resolution DNase I footprinting, indicate that the main contribution to the observed bend is given by the UspDBD itself, while binding of the EcRDBD molecule brings on a slight additional change of the preformed structure.  相似文献   

3.
The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, regulates gene expression associated with molting and metamorphosis in insects. The DNA binding domains (DBDs) of the Usp and EcR play an important role in their DNA-dependent heterodimerization. Analysis of the crystal structure of the UspDBD/EcRDBD heterocomplex from Drosophila melanogaster on the hsp27 gene response element, suggested an appreciable similarity between both DBDs. However, the chemical denaturation experiments showed a categorically lower stability for the EcRDBD in contrast to the UspDBD. The aim of our study was an elucidation of the molecular basis of this intriguing instability. Toward this end, we mapped the EcRDBD amino acid sequence positions which have an impact on the stability of the EcRDBD. The computational protein design and in vitro analyses of the EcRDBD mutants indicate that non-conserved residues within the α-helix 2, forming the EcRDBD hydrophobic core, represent a specific structural element that contributes to instability. In particular, the L58 appears to be a key residue which differentiates the hydrophobic cores of UspDBD and EcRDBD and is the main reason for the low stability of the EcRDBD. Our results might serve as a benchmark for further studies of the intricate nature of the EcR molecule.  相似文献   

4.
We present here a new assay that is based on the idea of the molecular beacon. This assay makes it possible to investigate two proteins interacting with DNA at two binding sites that are close to each other. The effectiveness of the test depends on the exclusive binding of three DNA fragments in the presence of two proteins, and the monitoring of the process depends upon observing the quenching of two independent fluorescence donors. As a model we used the components of the heterodimeric ecdysteroid receptor proteins ultraspiracle (Usp) and ecdysone receptor (EcR) from Drosophila melanogaster and a response element from the promoter of the hsp27 gene. The response element consists of two binding sites (half-sites) for the DNA binding domains (DBDs). We have shown that protein–protein interactions mediate cooperative binding of the ecdysteroid receptor DBDs to a hsp27pal response element. The analysis of the microscopic dissociation constants obtained with the DMB led to the conclusion that there was increased affinity of UspDBD to the 5′ half-site in the presence of EcRDBD when the 3′ half-site was occupied, and increased affinity of EcRDBD to the 3′ half-site when the 5′ half-site was occupied.  相似文献   

5.
The ecdysone receptor (EcR) and the ultraspiracle protein (Usp) form the functional receptor for ecdysteroids that initiates metamorphosis in insects. The Usp and EcR DNA-binding domains (UspDBD and EcRDBD, respectively) form a heterodimer on the natural pseudopalindromic element from the hsp27 gene promoter. The conformational changes in the protein-DNA during the formation of the UspDBD-EcRDBD-hsp27 complex were analyzed. Recombined UspDBD and EcRDBD proteins were purified and fluorescein labeled (FL) using the intein method at the C-ends of both proteins. The changes in the distances from the respective C-ends of EcRDBD and/or UspDBD to the 5'- and/or 3'-end of the response element were measured using fluorescence resonance energy transfer (FRET) methodology. The binding of EcRDBD induced a strong conformational change in UspDBD and caused the C-terminal fragment of the UspDBD molecule to move away from both ends of the regulatory element. UspDBD also induced a significant conformational change in the EcRDBD molecule. The EcRDBD C-terminus moved away from the 5'-end of the regulatory element and moved close to the 3'-end. An analysis was also done on the effect that DHR38DBD, the Drosophila ortholog of the mammalian NGFI-B, had on the interaction of UspDBD and EcRDBD with hsp27. FRET analysis demonstrated that hsp27 bending was induced by DHR38DBD. Fluorescence data revealed that hsp27 had a shorter end-to-end distance both in the presence of EcRDBD as well as in the presence of EcRDBD together with DHR38DBD, with DNA bend angles of about 36.2° and 33.6°, respectively. A model of how DHR38DBD binds to hsp27 in the presence of EcRDBD is presented.  相似文献   

6.
Plasticity of the ecdysone receptor DNA binding domain   总被引:3,自引:0,他引:3  
Ecdysteroids coordinate molting and metamorphosis in insects via a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and the ultraspiracle (Usp) protein. Here we show how the DNA-recognition alpha-helix and the T box region of the EcR DNA-binding domain (EcRDBD) contribute to the specific interaction with the natural response element and to the stabilization of the EcRDBD molecule. The data indicate a remarkable mutational tolerance with respect to the DNA-binding function of the EcRDBD. This is particularly manifested in the heterocomplexes formed between the EcRDBD mutants and the wild-type Usp DNA-binding domain (UspDBD). Circular dichroism (CD) spectra and protein unfolding experiments indicate that, in contrast to the UspDBD, the EcRDBD is characterized by a lower alpha-helix content and a lower stability. As such, the EcRDBD appears to be an intrinsically unstructured protein-like molecule with a high degree of intramolecular plasticity. Because recently published crystal structures indicate that the ligand binding domain of the EcR is also characterized by the extreme adaptability, we suggest that plasticity of the EcR domains may be a key factor that allows a single EcR molecule to mediate diverse biological effects.  相似文献   

7.
Ecdysteroids coordinate essential biological processes in Drosophila through a complex of two nuclear receptors, the ecdysteroid receptor (EcR) and the ultraspiracle protein (Usp). Biochemical experiments have shown that, in contrast to Usp, the EcR molecule is characterized by high intramolecular plasticity. To investigate whether this plasticity is sufficient to form EcR complexes with nuclear receptors other than Usp, we studied the interaction of EcR with the DHR38 nuclear receptor. Previous in vitro experiments suggested that DHR38 can form complexes with Usp and thus disrupt Usp-EcR interaction with the specific hsp27pal response element. This article provides the experimental evidence that EcR is able to form complexes with DHR38 as well. The recombinant DNA-binding domains (DBDs) of EcR and DHR38 interact specifically on hsp27pal. However, the interaction between the receptors is not restricted to their isolated DBDs. We pre\xadsent data that indicate that the full-length EcR and DHR38 can also form specific complexes within the nuclei of living cells. This interaction is mediated by the hinge region of EcR, which was recently classified as an intrinsically disordered region. Our results indicate that DHR38 might modulate the activity of the Usp-EcR heterodimer by forming complexes with both of its components.  相似文献   

8.
The nonstandard molecular beacon described in this article consists of 2 fragments, each built of a short single-stranded oligonucleotide sequence and a double-stranded sequence. One of these hybridization probes, labeled with a fluorescence donor (fluorescein), is solid phase immobilized. The second nonimmobilized probe is labeled with a fluorescence quencher (dabcyl). Annealing of both probes via single-stranded sequences was possible only in the presence of a specific protein molecule that recognized the response element sequence initially separated between the immobilized and nonimmobilized fragments. The system was applied successfully to detect the sequence-specific interaction of a natural hsp27 response element from the promoter of the hsp27 gene with the DNA binding domains of 2 nuclear receptor proteins: ultraspiracle Usp (UspDBD) and the ecdysone receptor EcR (EcRDBD). Measured in the absence of EcRDBD, the dissociation constant, K(d) of the UspDBD-hsp27 complex, was determined to be 3.26 nM, whereas for UspDBD devoid of the A-box (UspDBDDeltaA-hsp27 ), the dissociation constant was 4.81 nM. The respective K(d) values in the presence of EcRDBD were 2.43 nM and 10.80 nM. The results obtained with the immobilized molecular beacon technology were in agreement with those obtained by conventional fluorescence titrations and by fluorescence resonance energy transfer measurements with nonimmobilized beacons.  相似文献   

9.
The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs.  相似文献   

10.
11.
Two members of the nuclear receptor superfamily, EcR (ecdysteroid receptor protein) and Usp (Ultraspiracle), heterodimerize to form a functional receptor for the steroid hormone 20-hydroxyecdysone and thus enable it to coordinate morphogenetic events during insect metamorphosis. N-terminally His-tagged Usp was overexpressed in E. coli cells as a non-truncated protein and purified to homogeneity in two chromatographic steps. It was demonstrated that the recombinant receptor specifically binds the ecdysone response element of the hsp27 gene promoter (hsp27EcRE). Moreover, a highly synergistically formed heterodimeric complex with the DNA-binding domain of EcR was observed on hsp27EcRE, but not on the native Usp response element from the chorion s15 gene promoter. Recombinant Usp forms homodimers and homotetramers in the absence of DNA, as judged from gel filtration and chemical crosslinking experiments. Truncation of its N-terminal A/B region changes molecular characteristics of Usp, considerably weakening its oligomerization potential under the same experimental conditions. This contrasts with the results obtained previously for the similarly truncated RXR--a vertebrate homolog of Usp.  相似文献   

12.
13.
The Ecdysone receptor (EcR) is distributed between cytoplasm and nucleus in CHO cells. Nuclear localization is increased by the ligand Muristerone A. The most important heterodimerization partner Ultraspiracle (Usp) is localized predominantly in the nucleus. We used the diethylentriamine nitric oxide adduct DETA/NO, which releases NO and destroys the zinc-finger structure of nuclear receptors, to investigate whether nuclear EcR and Usp interact with DNA. If expressed separately, Usp and EcR in the absence of hormone do not interact with DNA. The hormone-induced increase in nuclear EcR is due to enhanced DNA binding. In the presence of Usp, EcR is shifted nearly quantitatively into the nucleus. Only a fraction (approximately 30%) of the heterodimer is sensitive to DETA/NO. Interaction of the heterodimer with DNA is mediated mainly by the C-domain of EcR. Deletion of the DNA-binding domain of Usp only slightly reduces nuclear localization of EcR/Usp, although the nuclear localization signal of Usp is not present anymore. The results indicate that EcR and Usp can enter the nucleus independently, but cotransport of both receptors mediated by dimerization via the ligand binding domains is possible even in the absence of hormone.  相似文献   

14.
15.
We identified two thyroid hormone response elements (TREs) in the 2.5-kb, 5'-flanking region of the human gene encoding type 1 iodothyronine deiodinase (hdio1), an enzyme which catalyses the activation of thyroxine to 3,5,3'-triiodothyronine (T3). Both TREs contribute equally to T3 induction of the homologous promoter in transient expression assays. The proximal TRE (TRE1), which is located at bp -100, has an unusual structure, a direct repeat of the octamer YYRGGTCA hexamer that is spaced by 10 bp. The pyrimidines in the -2 position relative to the core hexamer are both essential to function. In vitro binding studies of TRE1 showed no heterodimer formation with retinoid X receptor (RXR) beta or JEG nuclear extracts (containing RXR alpha) and bacterially expressed chicken T3 receptor alpha 1 (TR alpha) can occupy both half-sites although the 3' half-site is dominant. T3 causes dissociation of TR alpha from the 5' half-site but increases binding to the 3' half-site. Binding of a second TR to TRE1 is minimally cooperative; however, no cooperativity was noted for a functional mutant in which the half-sites are separated by 15 bp, implying that TRs bind as independent monomers. Nonetheless, T3 still causes TR dissociation from the DR+15, indicating that dissociation occurs independently of TR-TR contact and that rebinding of a T3-TR complex to the 3' half-site occurs because of its slightly higher affinity. A distal TRE (TRE2) is found at bp -700 and is a direct repeat of a PuGGTCA hexamer spaced by 4 bp. It has typical TR homodimer and TR-RXR heterodimer binding properties. The TRE1 of hdio1 is the first example of a naturally occurring TRE consisting of two relatively independent octamer sequences which do not require the RXR family of proteins for function.  相似文献   

16.
Heterodimerization of nuclear receptors is facilitated by the interaction of two dimerization interfaces: one spanning the DNA-binding (C domain) region and the adjacent hinge (D domain) region, and the other in the ligand-binding (E domain) region. Ultraspiracle (USP) heterodimerizes with ecdysone receptor (EcR) and this complex participates in ecdysone signal transduction. The natural ecdysone response elements (EcREs) discovered so far are asymmetric elements composed of either imperfect palindromes or direct repeats. However, gel mobility shift assays have shown that both symmetric (perfect palindromes) and asymmetric (imperfect palindromes and direct repeats) elements can bind to the EcR/USP complex. Therefore, we analyzed EcR/USP domains involved in heterodimerization on different types of response elements (RE). Gel shift assays using full-length and truncated EcR and USP proteins showed that heterodimerization of these two proteins in the presence of asymmetric RE (DR4 and the natural EcRE hsp27) requires both dimerization interfaces present in CD and E domains of both proteins. In contrast, the dimerization interface present in the E domain of either EcR or USP was not essential for heterodimerization on symmetric RE such as PAL1 or IR1. We conclude that the use of heterodimerization interfaces present in CD and E domains of EcR/USP depends on the nature of response elements they bind to.  相似文献   

17.
18.
We have studied the interaction of the DNA-binding domain of the glucocorticoid receptor with a glucocorticoid response element from the tyrosine aminotransferase gene. This response element consists of two binding sites (half-sites) for the glucocorticoid receptor DNA-binding domain. The sequences of these two half-sites are not identical, and we have previously shown that binding occurs preferentially to one of the half-sites (Tsai, S.-Y., Carlstedt-Duke, J., Weigel, N. L., Dahlman, K., Gustafsson, J.-A., Tsai, M.-J., and O'Malley, B. W. (1988) Cell 55, 361-369). We show here that binding to the low affinity half-site is dependent on previous occupancy of the high affinity half-site. This facilitated binding is dependent on the distance between the two half-sites and their relative orientation but is not dependent on the integrity of the DNA backbone. This is consistent with a model where DNA binding is not only dependent on interactions between the protein and its DNA target sequence but is also influenced by interactions between the protein molecules bound.  相似文献   

19.
20.
The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号