首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein dynamics on the microsecond–millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively 13C labeled proteins by means of longitudinal- and transverse-relaxation optimization. Using selective excitation and inversion of the narrow component of the 13C doublet, the experiment achieves significant sensitivity enhancement in terms of both signal intensity and the fractional contribution from exchange to transverse relaxation; additional signal enhancement is achieved by optimizing the longitudinal relaxation recovery of the covalently attached 1H spins. We validated the L-TROSY-selected R experiment by measuring exchange parameters for Y23 in bovine pancreatic trypsin inhibitor at a temperature of 328 K, where the ring flip is in the fast exchange regime with a mean waiting time between flips of 320 μs. The determined chemical shift difference matches perfectly with that measured from the NMR spectrum at lower temperatures, where separate peaks are observed for the two sites. We further show that potentially complicating effects of strong scalar coupling between protons (Weininger et al. in J Phys Chem B 117: 9241–9247, 2013b) can be accounted for using a simple expression, and provide recommendations for data acquisition when the studied system exhibits this behavior. The present method extends the repertoire of relaxation methods tailored for aromatic side chains by enabling studies of faster processes and improved control over artifacts due to strong coupling.  相似文献   

2.
The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13Cε1 nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13Cε1 dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13Cε1 dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.  相似文献   

3.
Neurotensin is a 13-residue peptide that acts as a neuromodulator of classical neurotransmitters such as dopamine and glutamate in the mammalian central nervous system, mainly by activating the G protein-coupled receptor (GPCR), neurotensin receptor 1 (NTS1). Agonist binding to GPCRs shifts the conformational equilibrium of the transmembrane helices towards distinct, thermodynamically favorable conformations that favor effector protein interactions and promotes cell signaling. The introduction of site specific labels for NMR spectroscopy has proven useful for investigating this dynamic process, but the low expression levels and poor stability of GPCRs is a hindrance to solution NMR experiments. Several thermostabilized mutants of NTS1 have been engineered to circumvent this, with the crystal structures of four of these published. The conformational dynamics of NTS1 however, has not been thoroughly investigated with NMR. It is generally accepted that stabilized GPCRs exhibit attenuated signaling, thus we thoroughly characterized the signaling characteristics of several thermostabilized NTS1 variants to identify an optimal variant for protein NMR studies. A variant termed enNTS1 exhibited the best combination of signaling capability and stability upon solubilization with detergents. enNTS1 was subsequently labeled with 13CH3-methionine in E. coli and purified to homogeneity in the absence of bound ligands. Using solution NMR spectroscopy we observed several well dispersed 13CH3-methionine resonances, many of which exhibited chemical shift changes upon the addition of the high affinity agonist peptide, NT8-13. Thus, enNTS1 represents a novel tool for investigating ligand induced conformational changes in NTS1 to gain insights into the molecular mechanisms underlying neurotensin signaling.  相似文献   

4.
Relaxation measurements of side-chain 13CH2-groups of uniformly 13C labeled human ubiquitin were performed at 600 MHz and 800 MHz magnetic field strength at 30°C. Dipole-dipole cross-correlated relaxation effects in T1 experiments were suppressed by the combination of radio-frequency pulses and pulsed field gradients during the relaxation delay leading to monoexponential relaxation decays that allow a more accurate extraction of the 13C T1 relaxation times. Heteronuclear 1H-13C NOEs obtained by using different proton saturation schemes indicate that the influence of cross-correlation is small. The experimental T1 and NOE data were interpreted in a model-free way in terms of a generalized order parameter and an internal correlation time.  相似文献   

5.
6.
Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.  相似文献   

7.
This report describes a novel NMR approach for mapping the interaction surface between an unlabeled ligand and a 13C,15N-labeled protein. The method relies on the spin inversion properties of the dipolar relaxation pathways and records the differential relaxation of two spin modes, where ligand and protein 1H magnetizations are aligned either in a parallel or anti-parallel manner. Selective inversion of protein protons is achieved in a straightforward manner by exploiting the one-bond heteronuclear scalar couplings (1JCH, 1JNH). Suppression of indirect relaxation pathways mediated by bulk water or rapidly exchanging protons is achieved by selective inversion of the water signal in the middle of the NOESY mixing period. The method does not require deuteration of the protein or well separated spectral regions for the protein and the ligand, respectively. Additionally, in contrast to previous methods, the new experiment identifies side-chain enzyme ligand interactions along the intermolecular binding interface. The method is demonstrated with an application to the B12-binding subunit of glutamate mutase from Clostridium tetanomorphum for which NMR chemical shift changes upon B12-nucleotide loop binding and a high-resolution solution structure are available.  相似文献   

8.
The dynamic aspect of proteins is fundamental to understanding protein stability and function. One of the goals of NMR studies of side-chain dynamics in proteins is to relate spin relaxation rates to discrete conformational states and the timescales of interconversion between those states. Reported here is a physical analysis of side-chain dynamics that occur on a timescale commensurate with monitoring by 2H spin relaxation within methyl groups. Motivated by observations made from tens-of-nanoseconds long MD simulations on the small protein eglin c in explicit solvent, we propose a simple molecular mechanics-based model for the motions of side-chain methyl groups. By using a Boltzmann distribution within rotamers, and by considering the transitions between different rotamer states, the model semi-quantitatively correlates the population of rotamer states with ‘model-free’ order parameters typically fitted from NMR relaxation experiments. Two easy-to-use, analytical expressions are given for converting S2axis’ values (order parameter for C–CH3 bond) into side-chain rotamer populations. These predict that S2axis’ values below 0.8 result from population of more than one rotameric state. The relations are shown to predict rotameric sampling with reasonable accuracy on the ps–ns timescale for eglin c and are validated for longer timescales on ubiquitin, for which side-chain residual dipolar coupling (RDC) data have been collected.  相似文献   

9.
A labeling scheme is introduced that facilitates the measurement of accurate 13Cβ chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13C enrichment (30–40%) at Cβ side-chain carbon positions for 15 of the amino acids with little 13C label at positions one bond removed (≈5%). A pair of samples are produced using [1-13C]-glucose/NaH12CO3 or [2-13C]-glucose as carbon sources with isolated and enriched (>30%) 13Cβ positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13Cβ chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein–ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples.  相似文献   

10.
Xu X  Ishima R  Ames JB 《Proteins》2011,79(6):1910-1922
Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca2+‐induced conformational changes in recoverin promote extrusion of its covalently attached myristate, known as the Ca2+‐myristoyl switch. Here, we present nuclear magnetic resonance (NMR) relaxation dispersion and chemical shift analysis on 15N‐labeled recoverin to probe main chain conformational dynamics. 15N NMR relaxation data suggest that Ca2+‐free recoverin undergoes millisecond conformational dynamics at particular amide sites throughout the protein. The addition of trace Ca2+ levels (0.05 equivalents) increases the number of residues that show detectable relaxation dispersion. The Ca2+‐dependent chemical shifts and relaxation dispersion suggest that recoverin has an intermediate conformational state (I) between the sequestered apo state (T) and Ca2+ saturated extruded state (R): T ? I ? R. The first step is a fast conformational equilibrium ([T]/[I] < 100) on the millisecond time scale (τexδω < 1). The final step (I ? R) is much slower (τexδω > 1). The main chain structure of I is similar in part to the structure of half‐saturated E85Q recoverin with a sequestered myristoyl group. We propose that millisecond dynamics during T ? I may transiently increase the exposure of Ca2+‐binding sites to initiate Ca2+ binding that drives extrusion of the myristoyl group during I ? R. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Microcrystalline uniformly 13C,15N-enriched yeast triosephosphate isomerase (TIM) is sequentially assigned by high-resolution solid-state NMR (SSNMR). Assignments are based on intraresidue and interresidue correlations, using dipolar polarization transfer methods, and guided by solution NMR assignments of the same protein. We obtained information on most of the active-site residues involved in chemistry, including some that were not reported in a previous solution NMR study, such as the side-chain carbons of His95. Chemical shift differences comparing the microcrystalline environment to the aqueous environment appear to be mainly due to crystal packing interactions. Site-specific perturbations of the enzyme's chemical shifts upon ligand binding are studied by SSNMR for the first time. These changes monitor proteinwide conformational adjustment upon ligand binding, including many of the sites probed by solution NMR and X-ray studies. Changes in Gln119, Ala163, and Gly210 were observed in our SSNMR studies, but were not reported in solution NMR studies (chicken or yeast). These studies identify a number of new sites with particularly clear markers for ligand binding, paving the way for future studies of triosephosphate isomerase dynamics and mechanism.  相似文献   

12.
Aromatic side chains are prevalent in protein binding sites, perform functional roles in enzymatic catalysis, and form an integral part of the hydrophobic core of proteins. Thus, it is of great interest to probe the conformational dynamics of aromatic side chains and its response to biologically relevant events. Indeed, measurements of (13)C relaxation rates in aromatic moieties have a long history in biomolecular NMR, primarily in the context of samples without isotope enrichment that avoid complications due to the strong coupling between neighboring (13)C spins present in uniformly enriched proteins. Recently established protocols for specific (13)C labeling of aromatic side chains enable measurement of (13)C relaxation that can be analyzed in a straightforward manner. Here we present longitudinal- and transverse-relaxation optimized pulse sequences for measuring R (1), R (2), and {(1)H}-(13)C NOE in specifically (13)C-labeled aromatic side chains. The optimized R (1) and R (2) experiments offer an increase in sensitivity of up to 35 % for medium-sized proteins, and increasingly greater gains are expected with increasing molecular weight and higher static magnetic field strengths. Our results highlight the importance of controlling the magnetizations of water and aliphatic protons during the relaxation period in order to obtain accurate relaxation rate measurements and achieve full sensitivity enhancement. We further demonstrate that potential complications due to residual two-bond (13)C-(13)C scalar couplings or dipolar interactions with neighboring (1)H spins do not significantly affect the experiments. The approach presented here should serve as a valuable complement to methods developed for other types of protein side chains.  相似文献   

13.
14.
Three improved 13C-spinlock experiments for side chain assignments of isotope labelled proteins in liquid state are presented. These are based on wide bandwidth spinlock techniques that have become possible with contemporary cryogenic probes. The first application, the H(CaliCaro)H-TOCSY, is an HCCH-TOCSY in which all CHn moieties of a protein are detected in a single experiment, including the aromatic ones. This enables unambiguous assignment of aromatic and aliphatic amino acids in a single, highly sensitive experiment. In the second application, the 13C-detected Call-TOCSY, magnetization transfer comprises all carbons—aliphatic, aromatic as well as the carbonyl carbons—making the complete carbon assignment possible using one spectrum only. Thirdly, the frequently used HC(CCO)NH experiment was redesigned by replacing the long C-carbonyl refocused INEPT transfer step by direct 13C–13C-TOCSY magnetization transfer from side chain carbons to the backbone carbonyls. The resulting HC(CCO)NH experiment minimizes relaxation losses because it is shorter and represents a more sensitive alternative particularly for larger proteins. The performance of the experiments is demonstrated on isotope labeled proteins up to the size of 43 kDa.  相似文献   

15.
The assignment of the aliphatic 13C resonances of trimeric Bacillus Subtilis chorismate mutase, a protein with a molecular mass of 44 kDa, consisting of three 127-residue monomers is presented by use of two-dimensional (2D) 13C-start and 13C-observe NMR experiments. These experiments start with 13C excitation and end with 13C observation while relying on the long transverse relaxation times of 13C spins in uniformly deuterated and 13C,15N-labeled large proteins. Gains in sensitivity are achieved by the use of a paramagnetic relaxation enhancement agent to reduce 13C T 1 relaxation times with little effect on 13C T 2 relaxation times. Such 2D 13C-only NMR experiments circumvent problems associated with the application of conventional experiments for side-chain assignment to proteins of larger sizes, for instance, the absence or low concentration of the side-chain 1H spins, the transfer of the side-chain spin polarization to the 1HN spins for signal acquisition, or the necessity of a quantitative reprotonation of the methyl moieties in the otherwise fully deuterated side-chains. We demonstrate that having obtained a nearly complete assignment of the side-chain aliphatic 13C resonances, the side-chain 1H chemical shifts can be assigned in a semiautomatic fashion using 3D 15N-resolved and 13C-resolved NOESY experiments measured with a randomly partially protonated protein sample. We also discuss perspectives for structure determination of larger proteins by using novel strategies which are based on the 1H,1H NOEs in combination with multiple residual dipolar couplings between adjacent 13C spins determined with 2D 13C-only experiments.  相似文献   

16.
The ability of 15N relaxation measurements in conformational analysis of linear peptides was studied using Leu-enkephalin: Tyr-Gly-Gly-Phe-Leu and and related tetrapeptide Tyr-Gly-Gly-Phe 95 % 15N enriched. 15N spin-lattice relaxation times measured at different temperatures in Me2SO solution indicate the presence of highly preferential folded structures in both peptides. A marked dependence of T1 upon the motional effects (segmental rather than anisotropic overall) was observed, while hydrogen bonding affects weakly the relaxation times. From a comparison of 15N relaxation parameters it appears that the tetrapeptide exhibits a more rigid structure than Leu-enkephalin, in accordance with previous 1H NMR studies. This paper provides evidence for the usefulness of 15N T1 as a mobility probe (independent from 13C) in the investigation of the conformational dynamics of peptides.  相似文献   

17.
The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes.  相似文献   

18.
Protein dynamics and thermodynamics can be characterized through measurements of relaxation rates of side chain (2)H and (13)C, and backbone (15)N nuclei using NMR spectroscopy. The rates reflect protein motions on timescales from picoseconds to milliseconds. Backbone and methyl side chain NMR relaxation measurements for several proteins are beginning to reveal the role of protein dynamics in protein stability and ligand binding.  相似文献   

19.
The extracellular carbohydrate-binding domain of the Type I transmembrane receptor CD44 is known to undergo affinity switching, where change in conformation leads to enhanced binding of its carbohydrate ligand hyaluronan. Separate x-ray crystallographic and NMR experiments have led to competing explanations, with the former supporting minor conformational changes at the binding site and the latter a major order-to-disorder unfolding transition distant from the binding site. Here, all-atom explicit-solvent molecular dynamics studies employing adaptive biasing force sampling revealed a substantial favorable free-energy change associated with contact formation between the Arg41 side chain and hyaluronan at the binding site, independent of whether the distant site was ordered or disordered. Analogous computational experiments on Arg41Ala mutants showed loss of this favorable free-energy change, consistent with existing experimental data. More provocatively, the simulation data revealed the molecular mechanism by which the order-to-disorder transition enhances hyaluronan binding: in the disordered state, a number of basic residues gain sufficient conformational freedom—lacking in the ordered state—to spontaneously form side-chain contacts with hyaluronan. Mutation of these residues to Ala had been known to decrease binding affinity, but there had previously been no structural explanation, given their lack of proximity to the carbohydrate-binding site in existing structures of the complex.  相似文献   

20.
13CHD2 methyl isotopomers are particularly useful to study methyl dynamics in proteins because, as compared with other methyl isotopomers, the 13C relaxation mechanism for this isotopomer is straightforward. However, in the case of proteins, where ()2 1, the refocused INEPT pulse sequence does not completely suppress unwanted 13CH3 signals. The presence of weak 13CH3 peaks is usually not a serious problem for smaller proteins because there are relatively few methyl signals and they are sharp; however, signal overlap becomes more common as the size of the protein increases. We overcome this problem by preparing a protein using a 98% D2O cell culture medium containing 3-13C pyruvic acid, 50–60% deuterated at the 3-position, and 4-13C 2-ketobutyric acid, 98% and 62% deuterated at the 3- and 4-positions, respectively. This approach significantly reduces the population of the CH3 isotopomer while optimizing the production of 13CHD2, the isotopomer desired for 13C relaxation measurements. In larger proteins where the deuterium T2 may be too short to measure accurately, we also suggest the alternative measurement of the proton T2 of the 13CH2D methyl isotopomer, because these protons are well-isolated from other protons in these highly deuterated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号