首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel inhibitor of nicotinic acetylcholine receptors (nAChRs), psi-conotoxin Piiif, was isolated from the venom of Conus purpurascens and found to have the sequence GOOCCLYGSCROFOGCYNALCCRK-NH2. The sequence is highly homologous to that of psi-conotoxin Piiie, a previously identified noncompetitive inhibitor of Torpedo electroplax nAChR, also isolated from C. purpurascens. Both psi-conotoxins block Torpedo and mouse nicotinic acetylcholine receptors (nAChRs), but psi-Piiif is less potent by a factor of 10(1)-10(2). A high-resolution structure of psi-Piiif was determined by NMR and molecular modeling calculations. Psi-Piiif analogues containing [(13)C]-labeled cysteine at selected positions were synthesized to resolve spectral overlap of Cys side chain proton signals. The structures are well-converged, with backbone atom position RMSDs of 0.21 A for the main body of the peptide between residues 4 and 22 and 0.47 A for all residues. The overall backbone conformation is closely similar to psi-Piiie, the main difference being in the degree of conformational disorder at the two termini. Psi-Piiie and psi-Piiif have similar locations of positive charge density, although psi-Piiif has a lower overall charge. One disulfide bridge of psi-Piiif appears to undergo dynamic conformational fluctuations based on both the model and on experimental observation. Chimeras in which the three intercysteine loops were swapped between psi-Piiie and psi-Piiif were tested for inhibitory activity against Torpedo nAChRs. The third loop, which contains no charged residues in either peptide, is the prime determinant of potency in these psi-conotoxins.  相似文献   

2.
Many venomous organisms produce toxins that disrupt neuromuscular communication to paralyze their prey. One common class of such toxins comprises nicotinic acetylcholine receptor antagonists (nAChRs). Thus, most toxins that act on nAChRs are targeted to the neuromuscular subtype. The toxin characterized in this report, alpha-conotoxin GIC, is a most striking exception. The 16-amino acid peptide was identified from a genomic DNA clone from Conus geographus. The predicted mature toxin was synthesized, and synthetic toxin was used in all studies described. alpha-Conotoxin GIC shows no paralytic activity in fish or mice. Furthermore, even at concentrations up to 100 microm, the peptide has no detectable effect on the human muscle nicotinic receptor subtype heterologously expressed in Xenopus oocytes. In contrast, the toxin has high affinity (IC(50) approximately 1.1 nm) for the human alpha3beta2 subunit combination, making it the most neuronally selective nicotinic antagonist characterized thus far. Although alpha-conotoxin GIC shares some sequence similarity with alpha-conotoxin MII, which is also a potent alpha3beta2 nicotinic antagonist, it is much less hydrophobic, and the kinetics of channel block are substantially different. It is noteworthy that the nicotinic ligands in C. geographus venom fit an emerging pattern in venomous predators, with one nicotinic antagonist targeted to the muscle subtype (thereby causing paralysis) and a second nicotinic antagonist targeted to the alpha3beta2 nAChR subtype (possibly inhibiting the fight-or-flight response).  相似文献   

3.
The alpha9 and alpha10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of alpha9 and alpha10 overlaps with that of alpha7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin alpha-conotoxin PeIA that discriminates between alpha9alpha10 and alpha7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. Alpha-conotoxin PeIA displayed a 260-fold higher selectivity for alpha-bungarotoxin-sensitive alpha9alpha10 nAChRs compared with alpha-bungarotoxin-sensitive alpha7 receptors. The IC50 of the toxin was 6.9 +/- 0.5 nM and 4.4 +/- 0.5 nM for recombinant alpha9alpha10 and wild-type hair cell nAChRs, respectively. Alpha-conotoxin PeIA bears high resemblance to alpha-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither alpha-conotoxin MII nor alpha-conotoxin GIC at concentrations of 10 microM blocked acetylcholine responses elicited in Xenopus oocytes injected with the alpha9 and alpha10 subunits. Among neuronal non-alpha-bungarotoxin-sensitive receptors, alpha-conotoxin PeIA was also active at alpha3beta2 receptors and chimeric alpha6/alpha3beta2beta3 receptors. Alpha-conotoxin PeIA represents a novel probe to differentiate responses mediated either through alpha9alpha10 or alpha7 nAChRs in those tissues where both receptors are expressed.  相似文献   

4.
Using assay-directed fractionation of the venom from the vermivorous cone snail Conus planorbis, we isolated a new conotoxin, designated pl14a, with potent activity at both nicotinic acetylcholine receptors and a voltage-gated potassium channel subtype. pl14a contains 25 amino acid residues with an amidated C-terminus, an elongated N-terminal tail (six residues), and two disulfide bonds (1-3, 2-4 connectivity) in a novel framework distinct from other conotoxins. The peptide was chemically synthesized, and its three-dimensional structure was demonstrated to be well-defined, with an alpha-helix and two 3(10)-helices present. Analysis of a cDNA clone encoding the prepropeptide precursor of pl14a revealed a novel signal sequence, indicating that pl14a belongs to a new gene superfamily, the J-conotoxin superfamily. Five additional peptides in the J-superfamily were identified. Intracranial injection of pl14a in mice elicited excitatory symptoms that included shaking, rapid circling, barrel rolling, and seizures. Using the oocyte heterologous expression system, pl14a was shown to inhibit both a K+ channel subtype (Kv1.6, IC50 = 1.59 microM) and neuronal (IC50 = 8.7 microM for alpha3beta4) and neuromuscular (IC50 = 0.54 microM for alpha1beta1 epsilondelta) subtypes of the nicotinic acetylcholine receptor (nAChR). Similarities in sequence and structure are apparent between the middle loop of pl14a and the second loop of a number of alpha-conotoxins. This is the first conotoxin shown to affect the activity of both voltage-gated and ligand-gated ion channels.  相似文献   

5.
We report the purification and characterization of a new conotoxin from the venom of Conus radiatus. The peptide, alphaS-conotoxin RVIIIA (alphaS-RVIIIA), is biochemically unique with respect to its amino acid sequence, post-translational modification, and molecular targets. In comparison to other nicotinic antagonists from Conus venoms, alphaS-RVIIIA exhibits an unusually broad targeting specificity for nicotinic acetylcholine receptor (nAChR) subtypes, as assayed by electrophysiology. The toxin is paralytic to mice and fish, consistent with its nearly irreversible block of the neuromuscular nAChR. Similar to other antagonists of certain neuronal nAChRs, the toxin also elicits seizures in mice upon intracranial injection. The only previously characterized conotoxin from the S superfamily, sigma-conotoxin GVIIIA, is a specific competitive antagonist of the 5-HT3 receptor; thus, alphaS-RVIIIA defines a novel family of nicotinic antagonists within the S superfamily. All previously characterized competitive conotoxin nAChR antagonists have been members of the A superfamily of conotoxins. Our working hypothesis is that the particular group of fish-hunting Conus species that includes Conus radiatus uses the alphaS-conotoxin family to target the muscle nAChR and paralyze prey.  相似文献   

6.
Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a β-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC(50) 0.18 ± 0.03 μm) and with lower efficiency to human α7 nAChR (IC(50) 22 ± 2 μm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1β1εδ) than the fetal form (α1β1γδ), EC(50) being 0.44 ± 0.1 μm and 1.56 ± 0.37 μm, respectively. The peptide had no effect on GABA(A) (α1β3γ2 or α2β3γ2) receptors at a concentration up to 100 μm or on 5-HT(3) receptors at a concentration up to 10 μm. Ala scanning showed that amino acid residues at positions 3-6, 8-11, and 13-14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges.  相似文献   

7.
Lynx1 expresses in the central nervous system and plays important role in a regulation of nicotinic acetylcholine receptors. Successful milligram-quantitive expression of ws-Lynx1 was achieved only in the case of its production in the form of cytoplasm inclusion bodies. Different conditions of ws-Lynx1 refolding for yield optimization were performed. The obtained recombinant protein was characterized by means of mass spectrometry and CD spectroscopy. The binding experiments on the nAChRs from Torpedo californica membranes revealed that ws-Lynxl is biologically active and blocks muscle nAChR with IC50-20-30 microM.  相似文献   

8.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

9.
The venoms of predatory marine snails (Conus spp.) contain diverse mixtures of peptide toxins with high potency and selectivity for a variety of voltage-gated and ligand-gated ion channels. Here we describe the chemical and functional characterization of three novel conotoxins, alphaD-VxXIIA, alphaD-VxXIIB, and alphaD-VxXIIC, purified from the venom of Conus vexillum. Each toxin was observed as an approximately 11-kDa protein by LC/MS, size exclusion chromatography, and SDS-PAGE. After reduction, the peptide sequences were determined by Edman degradation chemistry and tandem MS. Combining the sequence data together with LC/MS and NMR data revealed that in solution these toxins are pseudo-homodimers of paired 47-50-residue peptides. The toxin subunits exhibited a novel arrangement of 10 conserved cystine residues, and additional post-translational modifications contributed heterogeneity to the proteins. Binding assays and two-electrode voltage clamp analyses showed that alphaD-VxXIIA, alphaD-VxXIIB, and alphaD-VxXIIC are potent inhibitors of nicotinic acetylcholine receptors (nAChRs) with selectivity for alpha7 and beta2 containing neuronal nAChR subtypes. These dimeric conotoxins represent a fifth and highly divergent structural class of conotoxins targeting nAChRs.  相似文献   

10.
Three new polypeptides were isolated from the venom of the Thailand cobra Naja kaouthia and their amino-acid sequences determined. They consist of 65-amino-acid residues and have four disulfide bridges. A comparison of the amino-acid sequences of the new polypeptides with those of snake toxins shows that two of them (MTLP-1 and MTLP-2) share a high degree of similarity (55-74% sequence identity) with muscarinic toxins from the mamba. The third polypeptide (MTLP-3) is similar to muscarinic toxins with respect to the position of cysteine residues and the size of the disulfide-confined loops, but shows less similarity to these toxins (30-34% sequence identity). It is almost identical with a neurotoxin-like protein from Bungarus multicinctus (TrEMBL accession number Q9W727), the sequence of which has been deduced from cloned cDNA only. The binding affinities of the isolated muscarinic toxin-like proteins towards the different muscarinic acetylcholine receptor (mAChR) subtypes (m1-m5) was determined in competition experiments with N-[3H]methylscopolamine using membrane preparations from CHO-K1 cells, which express these receptors. We found that MTLP-1 competed weakly with radioactive ligand for binding to all mAChR subtypes. The most pronounced effect was observed for the m3 subtype; here an IC50 value of about 3 microM was determined. MTLP-2 had no effect on ligand binding to any of the mAChR subtypes at concentrations up to 1 microM. MTLP-1 showed no inhibitory effect on alpha-cobratoxin binding to the nicotinic acetylcholine receptor from Torpedo californica at concentrations up to 20 microM.  相似文献   

11.
Weak neurotoxins from snake venom are small proteins with five disulfide bonds, which have been shown to be poor binders of nicotinic acetylcholine receptors. We report on the cloning and sequencing of four cDNAs encoding weak neurotoxins from Naja sputatrix venom glands. The protein encoded by one of them, Wntx-5, has been synthesized by solid-phase synthesis and characterized. The physicochemical properties of the synthetic toxin (sWntx-5) agree with those anticipated for the natural toxin. We show that this toxin interacts with relatively low affinity (K(d) = 180 nm) with the muscular-type acetylcholine receptor of the electric organ of T. marmorata, and with an even weaker affinity (90 microm) with the neuronal alpha7 receptor of chicken. Electrophysiological recordings using isolated mouse hemidiaphragm and frog cutaneous pectoris nerve-muscle preparations revealed no blocking activity of sWntx-5 at microm concentrations. Our data confirm previous observations that natural weak neurotoxins from cobras have poor affinity for nicotinic acetylcholine receptors.  相似文献   

12.
The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) alpha subunit forms a binding site for alpha-bungarotoxin (alpha-BTX) [e.g., see Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230]. Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR alpha 1 subunits were tested for their ability to bind 125I-alpha-BTX, and differences in alpha-BTX affinity were determined by using solution (IC50S) and solid-phase (KdS) assays. Panels of overlapping peptides corresponding to the complete alpha 1 subunit of mouse and human were also tested for alpha-BTX binding, but other sequence segments forming the alpha-BTX site were not consistently detectable. The Torpedo alpha 1(181-200) and the homologous frog and chicken peptides bound alpha-BTX with higher affinity (KdS approximately 1-2 microM, IC50s approximately 1-2 microM) than the human and calf peptides (Kds approximately 3-5 microM, IC50s approximately 15 microM). The mouse peptide bound alpha-BTX weakly when attached to a solid support (Kd approximately 8 microM) but was effective in competing for 125I-alpha-BTX in solution (IC50 approximately 1 microM). The cobra nAChR alpha 1-subunit peptide did not detectably bind alpha-BTX in either assay. Amino acid substitutions were correlated with alpha-BTX binding activity peptides from different species. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased alpha-BTX binding, whereas oxidation of the peptides had little effect. Modifications of the cysteine/cystine residues of the cobra peptide failed to induce alpha-BTX binding activity. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/alpha 1-subunit interface a vicinal disulfide bound was not required for alpha-BTX binding.  相似文献   

13.
Previous work has shown that a toxin fraction, bungarotoxin (BGT) II-S1, isolated from Bungarus multicinctus venom could inhibit nicotinic receptor-mediated function. Experimental evidence suggested that this effect of the toxin might be due to a direct interaction of the toxin at the acetylcholine binding site and/or to its phospholipase activity. The toxin's enzymic activity has been further characterized; it has phospholipase activity of the A2 type with a Vmax of 12 pmol/min/ng protein and a Km of 300 microM. Phospholipases can produce their effects on a tissue through a variety of mechanisms including the disruption of important lipid protein bonds or the production of free fatty acids which interact with the tissue. To test for this latter possibility, various concentrations of fatty acid-free bovine serum albumin were added to the incubation medium. Fatty acid-free bovine serum albumin partially reversed the inhibition of carbachol-stimulated 1-[1,2-3H(N)]amino-4-guanidobutane ([3H]agmatine) uptake (used as a measure of ion flux) into the ganglion produced by BGT II-S1 (1.0 microM). In an attempt to determine which fatty acids might be responsible for this effect, various fatty acids were added to the incubation medium and their effect on nicotinic receptor-mediated [3H]agmatine uptake determined. Arachidonic acid decreased amine uptake by approximately 50% over the control carbachol-stimulated uptake; linoleic and oleic acid, on the other hand, did not significantly affect the response. This observation could imply that arachidonic acid is the fatty acid produced by the action of BGT II-S1 on the tissue to mediate the toxin's inhibitory effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
α-Conotoxin EI is an 18-residue peptide (RDOCCYHPTCNMSNPQIC; 4–10, 5–18) isolated from the venom of Conus ermineus, the only fish-hunting cone snail of the Atlantic Ocean. This peptide targets specifically the nicotinic acetylcholine receptor (nAChR) found in mammalian skeletal muscle and the electric organ Torpedo, showing a novel selectivity profile when compared to other α-conotoxins. The 3D structure of EI has been determined by 2D-NMR methods in combination with dynamical simulated annealing protocols. A total of 133 NOE-derived distances were used to produce 13 structures with minimum energy that complied with the NOE restraints. The structure of EI is characterized by a helical loop between Thr9 and Met12 that is stabilized by the Cys4-Cys10 disulfide bond and turns involving Cys4-Cys5 and Asn14-Pro15. Other regions of the peptide appear to be flexible. The overall fold of EI is similar to that of other α4/7-conotoxins (PnIA/B, MII, EpI). However, unlike these other α4/7-conotoxins, EI targets the muscular type nAChR. The differences in selectivity can be attributed to differences in the surface charge distribution among these α4/7-conotoxins. The implications for binding of EI to the muscular nAChR are discussed with respect to the current NMR structure of EI.  相似文献   

15.
We have purified a novel paralytic peptide with 32 AA and a single disulfide bond from the venom of Conus parius, a fish-hunting species. The peptide has the following sequence: TYGIYDAKPOFSCAGLRGGCVLPONLROKFKE-NH2, where O is 4-trans-hydroxyproline. The peptide, designated alphaC-conotoxin PrXA (alphaC-PrXA), is the defining member of a new, structurally distinct family of Conus peptides. The peptide is a competitive nAChR antagonist; all previously characterized conotoxins that competitively antagonize nAChRs are structurally and genetically unrelated. (Most belong to the alpha- and alphaA-conotoxin families.) When administered to mice and fish in vivo, alphaC-PrXA caused paralysis and death. In electrophysiological assays, alphaC-PrXA potently antagonized mouse muscle nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.8 and 3.0 nM for the adult (alpha1beta1 epsilondelta subunits) and fetal (alpha1beta1 gammadelta subunits) muscle nAChR subtypes, respectively. When tested on a variety of ligand-gated and voltage-gated ion channels, alphaC-PrXA proved to be a highly specific inhibitor of the neuromuscular nAChR. The peptide competes with alpha-bungarotoxin for binding at the alpha/delta and alpha/gamma subunit interfaces of the nAChR, with higher affinity for the alpha/delta subunit interface. AlphaC-PrXA is strikingly different from the many conopeptides shown to be nicotinic antagonists; it is most similar in its general biochemical features to the snake toxins known as Waglerins.  相似文献   

16.
The gene for the “weak” toxin of Naja kaouthia venom was expressed in Escherichia coli. “Weak” toxin is a specific inhibitor of nicotine acetylcholine receptor, but mechanisms of interaction of similar neurotoxins with receptors are still unknown. Systems previously elaborated for neurotoxin II from venom of the cobra Naja oxiana were tested for bacterial production of “weak” toxin from N. kaouthia venom. Constructs were designed for cytoplasmic production of N. kaouthia “weak” toxin in the form of a fused polypeptide chain with thioredoxin and for secretion with the leader peptide STII. However, it became possible to obtain “weak” toxin in milligram amounts only within cytoplasmic inclusion bodies. Different approaches for refolding of the toxin were tested, and conditions for optimization of the yield of the target protein during refolding were investigated. The resulting protein was characterized by mass spectrometry and CD and NMR spectroscopy. Experiments on competitive inhibition of 125I-labeled α-bungarotoxin binding to the Torpedo californica electric organ membranes containing the muscle-type nicotine acetylcholine receptor (α12β1γδ) showed the presence of biological activity of the recombinant “weak” toxin close to the activity of the natural toxin (IC50 = 4.3 ± 0.3 and 3.0 ± 0.5 µM, respectively). The interaction of the recombinant toxin with α7 type human neuronal acetylcholine receptor transfected in the GH4C1 cell line also showed the presence of activity close to that of the natural toxin (IC50 31 ± 5.0 and 14.8 ± 1.3 µM, respectively). The developed bacterial system for production of N. kaouthia venom “weak” toxin was used to obtain 15N-labeled analog of the neurotoxin.  相似文献   

17.
Palytoxin, a toxin isolated from the Caribean corrall Palythoa caribaeorum, increases the cation permeability of excitable membranes in vitro. Three membrane systems have been investigated: axonal membranes from crayfish walking leg nerves, membranes rich in nicotinic acetylcholine receptor isolated from Torpedo californica electric tissue and, for control, artificial liposomes. Ion permeability of the latter was not affected by palytoxin, but with both biological membranes an increase in cation permeability was observed at a palytoxin concentration of 0.14 microM. Palytoxin-induced cation flow through the axonal membrane was not inhibited by tetrodotoxin, indicating that the voltage-dependent sodium channels were not involved. The effect of palytoxin on the receptor-rich membranes was not blocked by alpha-bungarotoxin, a competitive antagonist of the nicotinic acetylcholine receptor, nor by triphenylmethylphosphonium, a blocker of the receptor-ion channel. But with both the axonal and the receptor-rich membranes ouabain was an inhibitor of the palytoxin-induced cation flow. Evidence is presented that it is not the (Na+ + K+)-ATPase which is affected by palytoxin as has been postulated for similar observations with non-neuronal membranes (Chhatwal, G.S., Hessler, H.-J. and Habermann, E. (1983) Naunyn-Schmiedeberg's Arch. Pharmacol. 323, 261-268).  相似文献   

18.
1. Forskolin, a naturally occurring diterpene that activates adenylate cyclase, HL706, a water-soluble derivative of forskolin (6 beta-[(piperidino)acetoxy]-7-desacetylforskolin) that is less potent than forskolin in activating adenylate cyclase, and 1,9-dideoxyforskolin, an analogue that does not activate adenylate cyclase, were examined for effects on the nicotinic receptor-mediated 22Na+ flux, a high potassium-induced 45Ca2+ flux through L-type calcium channels, and a high potassium-induced 86Rb+ efflux through a calcium-dependent potassium channels in PC12 cells. 2. Forskolin and analogues at 30 microM completely blocked carbamylcholine-elicited flux of 22Na+ through the nicotinic receptor-gated channel. 1,9-Dideoxyforskolin had an IC50 value of 1.6 microM with forskolin and HL706 being two- to three fold less potent. 3. Forskolin and its analogues appear to be noncompetitive blockers of the neuronal nicotinic receptor-channel complex in PC12 cells, but unlike many noncompetitive blockers, did not markedly enhance desensitization. Instead, forskolin, but not HL706 or 1,9-dideoxyforskolin, slightly antagonized the desensitization evoked by high concentrations of carbamylcholine. N-Ethylcarboxamidoadenosine, an adenosine analogue that elevates cyclic AMP and 8-bromo-cyclic AMP had no effect on desensitization. 4. Forskolin, HL706, and 1,9-dideoxyforskolin in the presence of carbamylcholine inhibited the binding of a noncompetitive blocker, [3H]perhydrohistrionicotoxin, to the muscle-type nicotinic receptor-channel complex in Torpedo electroplax membranes with IC50 values of 20 microM. Forskolin had no effect on [3H]perhydrohistrionicotoxin binding in the absence of carbamylcholine, while HL706 and 1,9-dideoxyforskolin still inhibited binding in the absence of carbamylcholine. 5. Forskolin, but not HL706 or 1,9-dideoxyforskolin had a slight inhibitory effect on the binding of [125I]alpha-bungarotoxin to acetylcholine recognition sites in Torpedo membranes. 1,9-Dideoxyforskolin at 30 microM, but not forskolin or HL706, markedly inhibited depolarization-evoked 45Ca+ flux and 86Rb+ efflux in PC12 cells, suggesting that 1,9-dideoxyforskolin has nonspecific inhibitory effects on a variety of ion channels.  相似文献   

19.
The nicotinic acetylcholine receptor (nAChR) carries two binding sites for snake venom neurotoxins. alpha-Bungarotoxin from the Southeast Asian banded krait, Bungarus multicinctus, is a long neurotoxin which competitively blocks the nAChR at the acetylcholine binding sites in a relatively irreversible manner. Low angle x-ray diffraction was used to generate electron density profile structures at 14-A resolution for Torpedo californica nAChR membranes in the absence and presence of alpha-bungarotoxin. Analysis of the lamellar diffraction data indicated a 452-A lattice spacing between stacked nAChR membrane pairs. In the presence of alpha-bungarotoxin, the quality of the diffraction data and the lamellar lattice spacing were unchanged. In the plane of the membrane, the nAChRs packed together with a nearest neighbor distance of 80 A, and this distance increased to 85 A in the presence of toxin. Electron density profile structures were calculated in the absence and presence of alpha-bungarotoxin, revealing a location for the toxin binding sites. In native, fully-hydrated nAChR membranes, alpha-bungarotoxin binds to the nAChR outer vestibule and contacts the surface of the membrane bilayer.  相似文献   

20.
A polyhistidine tag was added to the N-terminus of alpha-bungarotoxin (Bgtx) recombinantly expressed in E. coli. The His-tagged Bgtx was identical to native, venom-derived Bgtx in its apparent affinity for the nicotinic acetylcholine receptor (nAChR) in Torpedo electric organ membranes. Furthermore, in a physiological assay involving mouse muscle nAChR expressed in Xenopus oocytes, the His-tagged Bgtx was as effective as authentic Bgtx at blocking acetylcholine-evoked currents. Ala-substitution mutagenesis of His-tagged Bgtx was used to evaluate the functional contribution of Arg36, a residue that is invariant among all alpha-neurotoxins. Replacement with Ala resulted in a 90-fold decrease in the apparent affinity for the Torpedo nAChR and a corresponding 150-fold increase in the IC50 for block of heterologously expressed mouse muscle nAChR, demonstrating the critical importance of this positive charge for the binding and functional activity of a long alpha-neurotoxin. The observed decrease in affinity corresponds to a DeltaDeltaG of 2.7 kcal/mol and indicates that Arg36 makes a major contribution to complex formation. This finding is consistent with the proposal that Arg36 mimics the positive charge found on acetylcholine and directs the toxin to interact with receptor sites normally involved in acetylcholine recognition. In comparison, Ala-substitution of the highly conserved Lys26 resulted in only a 9-fold decrease in apparent affinity. Truncation of the His-tagged Bgtx following residue 67 produces a toxin lacking the seven C-terminal residues including the two positively charged residues Lys70 and Arg72. Truncation leads to a 7-fold decrease in apparent binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号