首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphisms in the SLCO1B1 gene encoding the human hepatocellular uptake transporter OATP1B1 can be associated with alterations in transporter properties and may affect the pharmacokinetics of drugs transported by OATP1B1. Therefore, it is of interest to investigate newly identified genetic variations on their impact on the pharmacokinetic of OATP1B1 substrates. We analyzed the allelic frequencies of five variations (c.452A>G, c.1007C>G, c.1454G>T, c.1628T>G, and c.1929A>C) in Caucasians and investigated the influence of SNP c.1929A>C which had an allelic frequency of 4.7%. None of the 285 Caucasian DNA donors were carriers of c.452A>G, c.1007C>G, c.1454G>T, c.1628T>G. Liver samples carrying SNP c.1929A>C were analyzed for OATP1B1 protein expression demonstrating no differences in expression levels compared to wild-type samples. Possible functional consequences were analyzed using HEK cells stably expressing the mutated OATP1B1 protein (OATP1B1-Leu643Phe). Uptake experiments with sulfobromophthalein, estradiol-17ssD-glucuronide, pravastatin, and taurocholic acid showed no significant difference in the uptake kinetics compared to wild-type OATP1B1. We showed that four variations frequent in the Asian population were not detected in Caucasians and demonstrated that the frequent SNP c.1929A>C had no effect on the hepatic OATP1B1 protein expression and on the transport properties. Therefore, it is unlikely that c.1929A>C contributes to interindividual variability in drug disposition.  相似文献   

2.
Organic anion transporting polypeptides (OATPs, gene symbol SLCO) mediate sodium-independent transport of endogenous compounds such as bile salts, hormones and their conjugates as well as toxins and drugs. OATP1B1 is the major OATP specifically expressed at the basolateral membrane of human hepatocytes and many clinically important drugs have been shown to be substrates of the transporter. According to the computer-based hydropathy analysis, a large intracellular loop 3 (IL3) is situated between transmembrane domain 6 and 7 of OATPs, in which a conserved NPxY motif is found. In the current study, HEK293 cells expressing the HA-tagged OATP1B1 was utilized to investigate the role of the NPxY motif for the function and expression of the transporter. Alanine replacement of N335 or P336 retained substantial uptake function; while simultaneous mutation of these residues resulted in a double mutant that lost almost all the transport activity. On the other hand, Y338A showed >80% reduction for estrone-3-sulfate uptake. Plasma membrane protein analysis revealed that N335/P336A completely lost its cell surface protein expression; while that of Y338A is dramatically reduced. Further investigation with pharmacological inhibitors and immunocytochemistry demonstrated that N335/336A is detained in the Golgi apparatus and Y338A exhibited accelerated protein degradation rate compared to that of the wild-type. Conservative replacement of Y338 with phenylalanine fully recovered uptake and expression of the transporter. In summary, a new role was observed for the NPxY motif located in the IL3 of OATP1B1, which may affect processing and stability of the transporter.  相似文献   

3.
CI-1034, an endothelin-A receptor antagonist was being developed for pulmonary hypertension. Drug-drug interaction studies using human hepatic microsomes were conducted to assess CYP1A2, CYP2C9, CYP2C19, CYP3A4 and CYP2D6 inhibition potential; CYP3A4 induction potential was evaluated using primary human hepatocytes. CI-1034 moderately inhibited CYP2C9 (IC(50) 39.6 microM) and CYP3A4 activity (IC(50) 21.6 microM); CYP3A4 inhibition was metabolism-dependent. In human hepatocytes, no increase in CYP3A4 activity was observed in vitro, while mRNA was induced 15-fold, similar to rifampin, indicating that CI-1034 is both an inhibitor and inducer of CYP3A4. A 2-week clinical study was conducted to assess pharmacokinetics, pharmacodynamics and safety. No significant changes were observed in [formula: see text] between days 1 and 14. However, reversible elevations of serum liver enzymes were observed with a 50mg BID dose and the program was terminated. To further understand the interactions of CI-1034 in the liver and possible mechanisms of the observed hepatotoxicity, we evaluated the effect of CI-1034 on bile acid transport and previously reported that CI-1034 inhibited biliary efflux of taurocholate by 60%, in vitro. This indicated that inhibition of major hepatic transporters could be involved in the observed hepatotoxicity. We next evaluated the in vitro inhibition potential of CI-1034 with the major hepatic transporters OATP1B1, OATP1B3, OATP2B1, MDR1, MRP2 and OCT. CI-1034 inhibited OATP1B1 (K(i) 2 microM), OATP1B3 (K(i) 1.8 microM) and OATP2B1 activity (K(i) 3.3 microM) but not OCT, MDR1 or MRP2 mediated transport. Our data indicates that CI-1034 is an inhibitor of major hepatic transporters and inhibition of bile efflux may have contributed to the observed clinical hepatotoxicity. We recommend that in vitro drug-drug interaction panels include inhibition and induction studies with transporters and drug metabolizing enzymes, to more completely assess potential in vivo interactions or toxicity.  相似文献   

4.
Hepatic disposition plays a significant role in the pharmacokinetics and pharmacodynamics of a variety of drugs. Sinusoidal membrane transporters have been shown to participate in the hepatic disposition of many pharmaceuticals. Two sinusoidal membrane transporters with an established role in hepatic disposition are OATP1B1 and OATP1B3 (organic anion-transporting polypeptides 1B1 and 1B3, respectively). OATP1B1 and OATP1B3 have been implicated in the hepatic uptake of statin drugs, and polymorphisms linked to OATP1B1 have been associated with deleterious patient endpoints. As a result, OATP1B1 and OATP1B3 represent sites for potential drug-drug interactions. Numerous methods exist for identifying potential drug-drug interactions with transporters. However, relatively few offer the convenience and speed of fluorescence-based assays. Here a fluorescence-based assay was developed for measuring the OATP1B1- and OATP1B3-mediated transport of 8-fluorescein-cAMP (8-FcA). The OATP1B1- and OATP1B3-mediated transport of 8-FcA was time dependent and saturable (Km = 2.9 and 1.8 μM, Vmax = 0.20 and 0.33 pmol/min/cm2, respectively). Molecules known to interact with OATPs, including cyclosporin A, rifampicin, and glibenclamide, each demonstrated concentration-dependent inhibition of 8-FcA transport by OATP1B1 and OATP1B3. The in vitro fluorescence-based assays described here using 8-FcA as the substrate are convenient and rapid and have utility in screening drug candidates for potential drug-drug interactions with OATP1B1 and OATP1B3.  相似文献   

5.
This study sought to clarify the contributions of organic anion-transporting polypeptide (OATP) 1B1 and 1B3 to the liver uptake of chenodeoxycholic acid (CDCA). We synthesized a fluorescent version of CDCA, chenodeoxychilyl-(Nepsilon-NBD)-lysine (CDCA-NBD), to characterize transporter-mediated uptake. CDCA-NBD is efficiently transported by OATP1B1 and OATP1B3 with high affinities. The Michaelis-Menten constants for CDCA-NBD uptake by OATP1B1 and OATP1B3 were 1.45 +/- 0.39 microM and 0.54 +/- 0.09 microM, respectively. By confocal laser scanning microscopy, CDCA-NBD, which is taken up by OATP1B1 and OATP1B3, was observed to localize to the cytosol. We also examined the transport of newly synthesized fluorescent bile acids. NBD-labeled bile acids, including cholic acid, deoxycholic acid, lithocholic acid, and ursodeoxycholic acid, were all transported by OATP1B1 and OATP1B3. CDCA-NBD exhibited the highest rate of transport of the five NBD-labeled bile acids examined in OATP1B1- and OATP1B3-expressing cells. Our results suggest that OATP1B1 and OATP1B3 play important roles in CDCA uptake into the liver. Fluorescent bile acids are useful tools to characterize the uptake properties of membrane transporters.  相似文献   

6.
Drug metabolism in liver is the major pathway for xenobiotic elimination from the body. Access to intracellular metabolising enzymes is possible through passive diffusion of lipophilic drugs through cell membrane or active uptake of more polar drugs by specific uptake transporters. Organic Anion Transporting Polypeptides (OATP/SLCO) and Organic Cation Transporters (OCT/SLC22A) are among the most important transporters involved in xenobiotic transport into hepatocytes. Isolated hepatocytes are the model of choice for drug metabolism and drug transport investigations. These primary cells are used either as fresh directly after isolation from liver biopsies, or after subsequent cryopreservation in liquid nitrogen. While cryopreserved hepatocytes are a more convenient and flexible tool for in vitro investigations, information on the functionality of transporter activity after cryopreservation is still sparse. The present study investigated the effect of cryopreservation of human hepatocytes on the uptake of [(3)H]-estradiol-17β-glucuronide (E(2)17βG, substrate of OATP1B1/3/SLCO1B1/3) and [(3)H]-1-methyl-4-phenylpyridinium (MPP+, substrate of OCT1/SLC22A1) into hepatocytes from 6 and 5 human donors, respectively. The results showed that cryopreserved human hepatocytes display carrier-mediated uptake of E(2)17βG and MPP+. While the affinity of E(2)17βG for OATP1B1/3/SLCO1B1/3 was not affected by cryopreservation (Km unchanged, the Wilcoxon signed pair t test gave p=1), V(max) and CL(uptake) values decreased in average by 47% (p=0.06). The passive diffusion of E(2)17βG decreased significantly after cryopreservation (p=0.03). Cryopreservation did not affect Km, V(max) or the passive diffusion of MPP+ in human hepatocytes. In conclusion, the present study showed that cryopreserved human hepatocytes are useful tool to investigate hepatic uptake mediated by OATP1B1/3/SLCO1B1/3 or OCT1/SLC22A1, two of the most important hepatic uptake transporters.  相似文献   

7.
Organic anion transporting polypeptides (OATPs) are transmembrane proteins responsible for the uptake of a wide range of endogenous compounds and clinically important drugs. The liver-specific OATP1B1 serves crucial roles in the removal of many orally administered drugs. The proper function of the transporter hence is essential for the pharmacokinetics of various therapeutic agents. Membrane proteins tend to form oligomers that are important for their stability, targeting and/or interactions with the substrates. Previous study in our laboratory revealed that OATP1B1 may form homo-oligomers and that a GXXXG motif localized at transmembrane domain 8 (TM8) may affect its oligomerization. In the current study, three short-form leucine heptad repeats within the transmembrane domains of OATP1B1 were investigated. It was found that the disruption of leucine heptad repeats within TM3 dramatically reduced the uptake function and protein-protein association of OATP1B1; while within TM8, only L378 is essential for the function of OATP1B1 and alanine replacement of L378 exhibited no effect on the oligomerization. The fragmental expression of TM3 interfered with the association of OATP1B1 homo-oligomers as well as its association with OATP1B3, which is also selectively expressed at human hepatocytes, suggesting that the region may be shared by both transporters for their protein-protein interactions.  相似文献   

8.
The existence of a porphyrin uptake transporter in hepatocytes has been hypothesized in recent years, but to date it has not been identified. While the linear tetrapyrrole bilirubin has been shown to be a substrate for the organic anion transporting polypeptide 1B1 (OATP1B1), similar studies have not been conducted for the cyclic tetrapyrroles (porphyrins). The aim of this study was to determine the structural features of linear and cyclic tetrapyroles necessary for interaction with OATP1B1. The interaction was quantified using HEK cells stably expressing OATP1B1 and measuring the inhibition of OATP1B1-mediated uptake of estradiol 17β-d-glucuronide in the presence or absence of various linear and cyclic tetrapyrroles. Ditaurine-conjugated bilirubin was the most potent inhibitor of uptake, with an IC50 of 5 nM, while the substitution of the taurine side chains with methyl ester eliminated the inhibition of estradiol 17β-d-glucuronide uptake. Hematoporphyrin, a cyclic tetrapyrrole with carboxyalcohol side chains at positions C-3 and C-8 and carboxyethyl side chains at positions 13 and 17 had an IC50 of 60 nM, while porphyrins lacking charged side chains such as etioporphyrin I and phthalocyanine did not inhibit OATP1B1. Chlorin e6 and hematoporphyrin were shown to be competitive inhibitors of OATP1B1-mediated uptake of bromosulfophthalein with Kis of 5.8 ± 0.3 and 1.6 ± 0.3 μM, respectively. While these studies do not provide direct evidence, they do support the assumption that tetrapyrroles are transported by OATP1B1. Additionally, these findings offer a possible explanation for the clinical observation that patients suffering from certain porphyrietic diseases have a reduced ability to excrete organic anions.  相似文献   

9.
Organic anion transporting polypeptides (OATP/SLCO) are generally believed to function as electroneutral anion exchangers, but direct evidence for this contention has only been provided for one member of this large family of genes, rat Oatp1a1/Oatp1 (Slco1a1). In contrast, a recent study has indicated that human OATP1B3/OATP-8 (SLCO1B3) functions as a GSH-bile acid cotransporter. The present study examined the transport mechanism and possible GSH requirement of the two members of this protein family that are expressed in relatively high levels in the human liver, OATP1B3/OATP-8 and OATP1B1/OATP-C (SLCO1B1). Uptake of taurocholate in Xenopus laevis oocytes expressing either OATP1B1/OATP-C, OATP1B3/OATP-8, or polymorphic forms of OATP1B3/OATP-8 (namely, S112A and/or M233I) was cis-inhibited by taurocholate and estrone sulfate but was unaffected by GSH. Likewise, taurocholate and estrone sulfate transport were trans-stimulated by estrone sulfate and taurocholate but were unaffected by GSH. OATP1B3/OATP-8 also did not mediate GSH efflux or GSH-taurocholate cotransport out of cells, indicating that GSH is not required for transport activity. In addition, estrone sulfate uptake in oocytes microinjected with OATP1B3/OATP-8 or OATP1B1/OATP-C cRNA was unaffected by depolarization of the membrane potential or by changes in pH, suggesting an electroneutral transport mechanism. Overall, these results indicate that OATP1B3/OATP-8 and OATP1B1/OATP-C most likely function as bidirectional facilitated diffusion transporters and that GSH is not a substrate or activator of their transport activity.  相似文献   

10.
Bilirubin, the end product of heme catabolism, is taken up from the blood circulation into the liver. This work identifies a high-affinity transport protein mediating the uptake of bilirubin and its conjugates into human hepatocytes. Human embryonic kidney cells (HEK293) permanently expressing the recombinant organic anion-transporting polypeptide 2 (human OATP2, also known as LST-1 or OATP-C; symbol SLC21A6) showed uptake of [(3)H]monoglucuronosyl bilirubin, [(3)H]bisglucuronosyl bilirubin, and [(3)H]sulfobromophthalein with K(m) values of 0.10, 0.28, and 0.14 microm, respectively. High-affinity uptake of unconjugated [(3)H]bilirubin by OATP2 occurred in the presence of albumin and was not mediated by another basolateral hepatic uptake transporter, human OATP8 (symbol SLC21A8). OATP2 and OATP8 differed by their capacity to extract substrates from albumin before transport. In comparison to the high-affinity transport by OATP2, OATP8 transported [(3)H]sulfobromophthalein and [(3)H]monoglucuronosyl bilirubin with lower affinity, with K(m) values of 3.3 and 0.5 microm, respectively. The organic anion indocyanine green potently inhibited transport mediated by OATP2, with a K(i) value of 112 nm, but did not inhibit transport mediated by OATP8. Human OATP2 may play a key role in the prevention of hyperbilirubinemia by facilitating the selective entry of unconjugated bilirubin and its glucuronate conjugates into human hepatocytes.  相似文献   

11.
12.
The accumulation mechanisms of amiodarone (AMD) involving transporters in lung alveolar epithelial type II cells were studied. The uptake of AMD was examined using human alveolar epithelial-derived cell line A549 as a model. AMD was transported by the carrier-mediated system, and the apparent Km and Vmax values were 66.8 ± 30.3 μM and 49.7 ± 9.7 nmol/mg protein/5 min, respectively. The uptake of AMD by A549 cells was Na+-independent and was inhibited by substrates of human organic anion transporting polypeptide (OATP). The inhibition profiles were similar to the inhibitory effects of several compounds on OATP2B1-mediated E-3-S transport, and RT-PCR analysis showed mRNA expression of OATP2B1 and 1B3 in A549 cells. SiRNAs targeted to the OATP2B1 gene decreased the OATP2B1 mRNA expression level in A549 cells up to about 50% and reduced the uptake of AMD up to about 40%. These results indicate that AMD uptake mediated by carriers, including OATP2B1, might lead to accumulation of AMD in the lung and AMD-induced pulmonary toxicity (AIPT).  相似文献   

13.
Organic anion-transporting polypeptide 1A2 (OATP1A2) is a drug uptake transporter known for broad substrate specificity, including many drugs in clinical use. Therefore, genetic variation in SLCO1A2 may have important implications to the disposition and tissue penetration of substrate drugs. In the present study, we demonstrate OATP1A2 protein expression in human brain capillary and renal distal nephron using immunohistochemistry. We also determined the extent of single nucleotide polymorphisms in SLCO1A2 upon analyses of ethnically defined genomic DNA samples (n = 95 each for African-, Chinese-, European-, and Hispanic-Americans). We identified six nonsynonymous polymorphisms within the coding region of SLCO1A2 (T38C (I13T), A516C (E172D), G559A (A187T), A382T (N128Y), A404T (N135I), and C2003G (T668S)), the allelic frequencies of which appeared to be ethnicity-dependent. In vitro functional assessment revealed that the A516C and A404T variants had markedly reduced capacity for mediating the cellular uptake of OATP1A2 substrates, estrone 3-sulfate and two delta-opioid receptor agonists, deltorphin II, and [D-penicillamine(2,5)]-enkephalin. On the other hand, the G559A and C2003G variants appeared to have substrate-dependent changes in transport activity. Cell surface biotinylation and immunofluorescence confocal microscopy suggested that altered plasma membrane expression of the transporter may contribute to reduced transport activity associated with the A516C, A404T, and C2003G variants. The A404T (N135I) variant also showed a shift in the apparent molecular size, indicative of alterations in glycosylation status. Taken together, these data suggest that SLCO1A2 polymorphisms may be an important yet unrecognized contributor to inter-individual variability in drug disposition and central nervous system entry of substrate drugs.  相似文献   

14.
Solute carrier transporters (SLCs), in particular the organic anion transporting polypeptides (OATPs) and organic anion/cation transporters (OATs/OCTs), are responsible for the cellular entry of many clinically important drugs in body. They largely influence drug safety and efficacy. Icariin is a flavonol widely present in many herbal preparations, which is used to improve sexual function and prevent osteogenesis. However, precautions are necessary in therapies containing icariin due to its involvement in drug–drug/herb interactions, possibly mediated through competing drug uptake via membrane‐transporter proteins. This study is the first to comprehensively evaluate the interactions between icariin and a range of essential SLCs. Our data demonstrated that icariin can significantly inhibit OATP1B3‐ and OATP2B1‐mediated cellular uptake of specific substrates (IC50 of 3.0 ± 1.3 and 6.4 ± 1.9 μM, respectively). Our study revealed that icariin can potentially compete with coadministrated drugs for particular SLCs, which may impact the therapeutic outcome of regimens.  相似文献   

15.
OATP2B1 is an important member of the organic anion transporting polypeptides (OATP) family and is implicated in the intestinal and hepatic disposition of endo- and xenobiotics. The purpose of this work was to produce a highly purified protein for use as a reference standard for quantification of OATP2B1 in human tissue and in vitro assay systems. Here, we report the successful expression, purification and characterization of OATP2B1 in a heterologous expression system. Protein expressed by the Sf9-baculovirus expression system is functionally active as demonstrated by saturable uptake kinetics with a K(m) of 5.9+/-0.76 microM for estrone-3-sulfate. OATP2B1 was extracted from Sf9-membranes with ABS-14-4 detergent and purified using a one-step FLAG-tag purification method. Yield of OATP2B1 from Sf9 cells was 1.1mg per liter of culture, for a final recovery of 1.8%. SDS-PAGE resolution and Western blot of purified protein displayed multiple banding of OATP2B1-specific protein, which was thoroughly investigated to confirm homogeneity of the sample. C-terminal FLAG-tag purification and immunoblot detection, together with N-terminal sequencing, confirmed the presence of only full-length protein. Treatment with endoglycosidases had little effect on the migration pattern in SDS-PAGE, suggesting that multiple banding was not due to different glycosylation states of the protein. Amino acid analysis further confirmed the homogeneity of the protein with a calculated extinction coefficient of 80,387 cm(-1) M(-1). Physical, biochemical and functional characterization show that purified human OATP2B1 is pure, homogeneous and appropriate for use as a standard to quantitate expression of OATP2B1 in in vitro systems and tissue samples.  相似文献   

16.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

17.
Li N  Hong W  Huang H  Lu H  Lin G  Hong M 《PloS one》2012,7(5):e36647
As an important structure in membrane proteins, transmembrane domains have been found to be crucial for properly targeting the protein to cell membrane as well as carrying out transport functions in transporters. Computer analysis of OATP sequences revealed transmembrane domain 2 (TM2) is among those transmembrane domains that have high amino acid identities within different family members. In the present study, we identify four amino acids (Asp70, Phe73, Glu74, and Gly76) that are essential for the transport function of OATP1B1, an OATP member that is specifically expressed in the human liver. A substitution of these four amino acids with alanine resulted in significantly reduced transport activity. Further mutagenesis showed the charged property of Asp70 and Glu74 is critical for proper function of the transporter protein. Comparison of the kinetic parameters indicated that Asp70 is likely to interact with the substrate while Glu74 may be involved in stabilizing the binding site through formation of a salt-bridge. The aromatic ring structure of Phe73 seems to play an important role because substitution of Phe73 with tyrosine, another amino acid with a similar structure, led to partially restored transport function. On the other hand, replacement of Gly76 with either alanine or valine could not recover the function of the transporter. Considering the nature of a transmembrane helix, we proposed that Gly76 may be important for maintaining the proper structure of the protein. Interestingly, when subjected to transport function analysis of higher concentration of esteone-3-sulfate (50 μM) that corresponds to the low affinity binding site of OATP1B1, mutants of Phe73, Glu74, and Gly76 all showed a transport function that is comparable to that of the wild-type, suggesting these amino acids may have less impact on the low affinity component of esteone-3-sulfate within OATP1B1, while Asp 70 seems to be involved in the interaction of both sites.  相似文献   

18.
The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability.  相似文献   

19.
Glut-1-mediated glucose transport is augmented in response to a variety of conditions and stimuli. In this study we examined the metabolic fate of glucose in cells in which glucose transport is stimulated by exposure to CoCl(2), an agent that stimulates the expression of a set of hypoxia-responsive genes including several glycolytic enzymes and the Glut-1 glucose transporter. Similarly, we determined the metabolic fate of glucose in stably transfected cells overexpressing Glut-1. Exposure of Clone 9 liver cell line, 3T3-L1 fibroblasts, and C(2)C(12) myoblasts to CoCl(2) resulted in an increase glucose uptake and in the activity of glucose phosphorylation ("hexokinase") and lactate dehydrogenase. In cells treated with CoCl(2), the net increase in glucose taken up was accounted for by its near-complete conversion to lactate. Cells stably transfected to overexpress Glut-1 also exhibited enhanced net uptake of glucose with the near-complete conversion of the increased glucose taken up to lactate; however, the effect in these cells was observed in the absence of any change in the activity of two glycolytic enzymes examined. These findings suggest that in cells in which glucose transport is rate-limiting for glucose metabolism, enhancement of the glucose entry step per se results in a near-complete conversion of the extra glucose to lactate.  相似文献   

20.
The low-affinity cation transporter (LCT1) from wheat (Triticum aestivum) was expressed in the methylotrophic yeast Pichia pastoris and its transport characteristics studied employing Ca(45) and Cd(109). A clone (LCT1#3) with the highest uptake of 14pmol of Ca/10(6)cells/10min when exposed to 100microM Ca(45) was chosen for further Ca(45) and Cd(109) transport characteristics. We report for the first time a K(m) for Ca by LCT1 of 0.43+/-0.15mM Ca activity which confirms LCT1 to be a low affinity transporter. Interestingly, the expression of LCT1 in Pichia resulted in reduced Cd(109) uptake compared to wild type cells, when cells were exposed to >or=60microM Cd. This is the first report of the ability of a heterologously expressed transporter to reduce the activity of endogenous transporter proteins to transport Cd. To our knowledge, this is the first demonstration of functional expression of a plant ion transporter using P. pastoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号