首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly purified (approximately 12 000-fold) homogeneous preparation of human plasma lecithin:cholesterol acyltransferase (LCAT) with 16% yield was obtained by a combination of density ultracentrifugation, high density lipoprotein affinity column chromatography, hydroxylapatite chromatography, and finally chromatography on anti-apolipoprotein D immunoglobulin-Sepharose columns to remove apolipoprotein D. This enzyme preparation was homogeneous by the following criteria: a single band by polyacrylamide gel electrophoresis in 8 M urea; a single band on sodium dodecyl sulfate gel electrophoresis with an apparent molecular weight of 68 000 +/- 1600; a single protein peak with a molecular weight of 70 000 on a calibrated Sephadex G-100 column. Its amino acid composition was different from human serum albumin and all other apoproteins isolated from lipoprotein fractions.  相似文献   

2.
Human plasma lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) has been purified more than 20,000 fold from plasma in 10% yield. This new procedure is composed of only four steps, including ultracentrifugation of plasma to yield a 1.21-1.25 kg/l density fraction, covalent binding of LCAT in this fraction to thiopropyl-Sepharose followed by adsorption of the enzyme to wheat-germ lectin-Sepharose for elimination of albumin and finally batch-wise treatment of the desorbed LCAT with hydroxyapatite to remove residual impurities. The purified enzyme was free of apolipoprotein A-I, A-II, B, C-I, C-II, C-III and E as checked by double immunodiffusion and SDS-electrophoresis, which latter method also demonstrated the absence of hitherto characterized lipid transfer proteins. Only traces of apolipoprotein D were present in the preparation as detected by immunoblotting. The purified enzyme retained alpha- and beta-LCAT activities. Non-denaturing and denaturing polyacrylamide gel electrophoresis yielded apparent molecular masses of 69 and 66 kDa, respectively, for the enzyme which on isoelectric focusing produced one major and one minor isoform with pI values of 4.20 and 4.25, respectively. Apolipoprotein A-I was required to transform artificial lecithin-cholesterol liposomes into substrates for the purified LCAT.  相似文献   

3.
Rat plasma lecithin: cholesterol acyltransferase, a 68 kDa glycoprotein, has been purified 14 000-fold by a modification of a procedure used for the human enzyme. The activity of lecithin: cholesteryl acyltransferase in human and rat plasma are the same, although activation of both enzymes by human apolipoprotein A-I is greater than that produced by rat apolipoprotein A-I. Using reassembled high-density lipoproteins composed of human apolipoprotein A-I, phosphatidylcholine ethers and a series of different phosphatidylcholines, the separate effects of molecular species specificity and microenvironment on the rate of cholesteryl ester formation was determined. Substitution of a fluid lipid, 1-palmityl-2-oleyl-sn-glycero-3-phosphorylcholine, for a solid lipid, 1,2-dipalmityl-sn-glycero-3-phosphorylcholine, produced an 8-fold increase in the activity of all molecular species of phosphatidylcholine. With either solid or fluid lipid environments, the activity decreased as a function of increasing chain length of saturated acyl groups. Addition of one or more double bonds greatly increased the activity of a given saturated homologue. One major difference between the molecular specificity of rat and human lecithin: cholesteryl acyltransferase was that the latter had a two-fold preference for phosphatidylcholines containing arachidonate at the sn-2-position.  相似文献   

4.
Purified preparations of phosphatidylcholine (lecithin): cholesterol acyltransferase (EC 2.3.1.43), were injected into goats to produce antisera reacting with this enzyme. The antisera and the gamma-globulin derived thereform were examined by the technics of immunodiffusion, immunoelectrophoresis and immunoinhibition of the enzyme. The antisera gave no precipitation lines with human high density lipoproteins (HDL) and human low density lipoproteins (LDL). A weak antibody titer towards human serum albumin was noted only after prolonged immunization. The enzymatically active band isolated from acrylamide gels gave a single arc in immunodiffusion and immunoelectrophoresis. The gamma-globulin derived from the antisera inhibited human phosphatidylcholine:cholesterol acyltransferase activity.  相似文献   

5.
Apolipoprotein A-IV, apolipoprotein E-2 and apolipoprotein E-3 were individually incorporated into defined phosphatidylcholine/cholesterol liposomes for study of lecithin:cholesterol acyltransferase activation. Enzyme activities obtained with these liposomes were compared with that from liposomes containing purified apolipoprotein A-I. Apolipoprotein A-IV, apolipoprotein E-2, and apolipoprotein E-3 all activated lecithin:cholesterol acyltransferase. With purified enzyme and with egg yolk phosphatidylcholine as the acyl donor, maximal activation was obtained at a concentration of approximately 0.5 nmol for apolipoprotein A-IV and 0.4 nmol for the apolipoprotein E isoforms. Apolipoprotein A-IV was approximately 25% as efficient as apolipoprotein A-I for the activation of purified enzyme; apolipoprotein E-2 was 40% as efficient, and apolipoprotein E-3, 30%. Similar activation results were obtained using plasma as the enzyme source. Analysis of the plasma of patients with absence of apolipoprotein A-I or with only trace amounts of apolipoprotein A-I exhibited a reduced rate of cholesterol esterification and lecithin:cholesterol acyltransferase activity that was proportional to the reduced level of the enzyme's mass. These results indicate that apolipoprotein A-IV and apolipoprotein E may serve as physiological cofactors for the enzyme reaction.  相似文献   

6.
Rat plasma lecithin:cholesterol acyltransferase, a 68 kDa glycoprotein, has been purified 14000-fold by a modification of a procedure used for the human enzyme. The activity of lecithin : cholesteryl acyltransferase in human and rat plasma are the same, although activation of both enzymes by human apolipoprotein A-I is greater than that produced by rat apolipoprotein A-I. Using reassembled high-density lipoproteins composed of human apolipoprotein A-I, phosphatidylcholine ethers and a series of different phosphatidylcholines, the separate effects of molecular species specificity and microenvironment on the rate of cholesteryl ester formation was determined. Substitution of a fluid lipid, 1-palmityl-2-oleyl-sn-glvcero-3-phosphonlcholine. for a solid lipid, 1,2-dipalmityl-sn-glycero-3-phosphorylcholine, produced an 8-fold increase in the activity of all molecular species of phosphatidylcholine. With either solid or fluid lipid environments, the activity decreased as a function of increasing chain length of saturated acyl groups. Addition of one or more double bonds greatly increased the activity of a given saturated homologue. One major difference between the molecular specificity of rat and human lecithin:cholesteryl acyltransferase was that the latter had a two-fold preference for phosphatidylcholines containing arachidonate at the sn-2-position.  相似文献   

7.
A human hepatoma cell line (HepG-2) was probed for the presence of lecithin: cholesterol acyltransferase (LCAT) using an antiserum to human plasma LCAT. Double immunodiffusion analysis using antiserum to human plasma LCAT revealed a single precipitin line in the sonicated cell homogenate. This precipitin line showed a reaction of identity with highly purified plasma LCAT. The presence of LCAT within the hepatoma cells was also confirmed by an immunofluorescence test. In contrast, the cell culture supernate showed a weak and inconsistent precipitin line. These data suggest that HepG-2 cells synthesize LCAT but secretion of the enzyme by these cells into the culture medium may be partially or totally impaired.  相似文献   

8.
Incubation studies were performed on plasma obtained from subjects selected for relatively low levels of high-density lipoprotein cholesterol (HDL-C) (no greater than 30 mg/dl) and particle size distributions enriched in the HDL3 subclass. Incubation (12 h, 37 degrees C) of plasma in the presence or absence of lecithin: cholesterol acyltransferase activity produces marked alteration in size profiles of both major apolipoprotein-specific HDL3 populations (HDL3(AI w AII), HDL3 species containing both apolipoprotein A-I and apolipoprotein A-II, and HDL3(AI w/o AII), HDL3 species containing apolipoprotein A-I) as isolated by immunoaffinity chromatography. In the presence or absence of lecithin: cholesterol acyltransferase activity, plasma incubation results in a shift of HDL3(AI w AII) species (initial mean sizes of major components, approx. 8.8 and 8.0 nm) predominantly to larger particles (mean size, 9.8 nm). A less prominent shift to smaller particles (mean size, 7.8 nm) accompanies the conversion to larger particles only when the enzyme is active. Combined shifts to larger (mean size, 9.8 nm) and smaller (mean size, 7.4 nm) particles are observed for HDL3(AI w/o AII) particles (mean size, 8.3 nm) also only in the presence of enzyme activity. However, in the absence of enzyme activity, HDL3(AI w/o AII) species, unlike the HDL3(AI w AII) species, are converted to smaller (mean size 7.4 nm) rather than to larger particles. Like native HDL2b(AI w/o AII) particles, the larger HDL3(AI w/o AII) conversion products exhibit a protein moiety with molecular weight equivalent to four apolipoprotein A-I molecules per particle; small HDL3(AI w/o AII) products are comprised predominantly of particles with two apolipoprotein A-I per particle. Incubation-induced conversion of HDL3 particles in the presence of lecithin: cholesterol acyltransferase activity is associated with increased binding of both apolipoprotein-specific HDL populations to low-density lipoproteins (LDL). The present studies indicate that, in the absence of lecithin: cholesterol acyltransferase activity, the two HDL3 populations follow different conversion pathways, possibly due to apolipoprotein-specific activities of lipid transfer protein or conversion protein in plasma. Our studies also suggest that lecithin: cholesterol acyltransferase activity may play a role in the origins of large HDL2b(AI w/o AII) species in human plasma by participating in the conversion of HDL3(AI w/o AII) particles, initially with three apolipoprotein A-I, to larger particles with four apolipoprotein A-I per particle.  相似文献   

9.
In a continued investigation of lecithin cholesterol acyltransferase reaction with micellar discoidal complexes of phosphatidylcholine, cholesterol, and various water soluble apolipoproteins, we prepared complexes containing human apo-E by the cholate dialysis method. These complexes were systematically compared to apo-A-I complexes synthesized under the same reaction conditions. Apo-E complexes (134 A in diameter) were slightly larger than apo-A-I complexes (110 A) but were very similar in terms of their protein and lipid content (2.4:0.10:1.0, egg phosphatidylcholine/cholesterol/apolipoprotein, w/w) and in the percentage of apolipoprotein in alpha-helical structure (72-74%). Concentration and temperature-dependence experiments on the velocity of the lecithin cholesterol acyltransferase reaction revealed differences in apparent Km values and small differences in apparent Vmax but very similar activation energies (18-20 kcal/mol). These observations suggest that differences in lecithin cholesterol acyltransferase activation by apo-A-I and apo-E are primarily a result of different affinities of the enzyme for the particles but that the rate-limiting step of the reaction is comparable for both complexes. Apo-E was found to be 18% as effective as apo-A-I in activating purified human lecithin cholesterol acyltransferase. Addition of free apo-A-I to apo-E complexes resulted in the exchange of bound for free apolipoprotein causing a slight increase in the reactivity with the enzyme when the incubation mixture was assayed. When the unbound apolipoproteins were removed by ultracentrifugation reisolated complexes containing both apo-E and apo-A-I demonstrated an even greater increase in reactivity with the enzyme.  相似文献   

10.
A method for the rapid extraction of lecithin:cholesterol acyltransferase (LCAT) from human plasma or serum has been developed. The method is based on direct treatment of acidified plasma of fully conserved enzyme activity, with the strong ion exchanger Q-Sepharose, which under the experimental conditions bound all LCAT but only about 10% of the total protein content of the plasma, no albumin and essentially no lipoproteins. This corresponds to a 10-fold purification. Only traces of apolipoprotein A-I remained in the quantitatively desorbed LCAT preparation which, however, contained a residual fraction of apolipoprotein D and acidic plasma proteins.The present one-step procedure for extraction of LCAT in high yields from human plasma represents a simple and efficient alternative to the first step in previously described methods for preparation of the enzyme to homogeneity.  相似文献   

11.
Isolation and properties of porcine lecithin:cholesterol acyltransferase   总被引:2,自引:0,他引:2  
Lecithin: cholesterol acyltransferase (LCAT, phosphatidylcholine: sterol O-acyltransferase, EC 2.3.1.43) was purified approximately 20 000-fold from pig plasma by ultracentrifugation, phenyl-Sepharose and hydroxyapatite chromatography. Purified LCAT had an apparent relative molecular mass of 69 000 +/- 2000. By isoelectrofocusing it separated into five or six bands with pI values ranging from pH 4.9 to 5.2. The amino acid composition was similar to that of the human enzyme. An antibody against pig LCAT was prepared in goat. The antibody reacted against pig LCAT and gave a reaction of partial identity with human LCAT. Incubation of pig plasma or purified enzyme with the antibody virtually inhibited LCAT activity. The same amount of antibody inactivated only 62% of the LCAT activity in human serum. Pig and human LCAT were activated to the same extent by either human or pig apolipoprotein A-I (apo-A-I) using small liposomes as substrate. Human apoA-I, however, caused a higher esterification rate for both enzymes. Using apoA-I and small liposomes as a substrate, the addition of apoC-II up to 4 micrograms/ml had no effect on the LCAT reaction, but above this concentration LCAT was inhibited. Small liposomes with phosphatidylcholine/cholesterol molar ratios of 3:1 up to 8.4:1 did not show any significant differences in the LCAT reaction, when used as substrates in the presence of various amounts of apoA-I and albumin. In contrast, the LCAT activity was significantly reduced by liposomes with phosphatidylcholine/cholesterol molar ratios below 3:1.  相似文献   

12.
Homogeneous subpopulations of human high-density lipoproteins subfraction-3 (HDL3) have been incubated at 37 degrees C with purified lecithin: cholesterol acyltransferase, human serum albumin and varying concentrations of human low-density lipoproteins (LDL). Changes in HDL particle size and composition during these incubations were monitored. Incubation of HDL3a (particle radius 4.3 nm) in the absence of LDL resulted in an esterification of more than 70% of the HDL free cholesterol after 24 h of incubation. This, however, was sufficient to increase the HDL cholesteryl ester by less than 10% and was not accompanied by any change in particle size. When this mixture was incubated in the presence of progressively increasing concentrations of LDL, which donated free cholesterol to the HDL, the molar rate of production of cholesteryl ester was much greater; at the highest LDL concentration HDL cholesteryl ester content was almost doubled after 24 h and there was an increase in the HDL particle size up to the HDL2 range. In the case of HDL3b (radius 3.9 nm), there were again only minimal changes in particle size in incubations not containing LDL. In the presence of the highest concentration of LDL tested, however, the particles were again enlarged into the HDL2 size range after 24 h incubation. These HDL2-like particles were markedly enriched with cholesteryl ester but depleted of phospholipid and free cholesterol when compared with native HDL2. Furthermore, the ratio of apolipoprotein A-I to apolipoprotein A-II resembled that in the parent-HDL3 and was very much lower than that in native HDL2. It has been concluded that purified lecithin: cholesterol acyltransferase is capable of increasing the size of HDL3 towards that of HDL2 but that other factors must operate in vivo to modulate the chemical composition of the enlarged particles.  相似文献   

13.
Human plasma apoproteins (apo) A-I and A-IV both activate the enzyme lecithin:cholesterol acyltransferase (EC 2.3.1.43). Lecithin:cholesterol acyltransferase activity was measured by the conversion of [4-14C] cholesterol to [4-14C]cholesteryl ester using artificial phospholipid/cholesterol/[4-14C]cholesterol/apoprotein substrates. The substrate was prepared by the addition of apoprotein to a sonicated aqueous dispersion of phospholipid/cholesterol/[4-14C]cholesterol. The activation of lecithin:cholesterol acyltransferase by apo-A-I and -A-IV differed, depending upon the nature of the hydrocarbon chains of the sn-L-alpha-phosphatidylcholine acyl donor. Apo-A-I was a more potent activator than apo-A-IV with egg yolk lecithin, L-alpha-dioleoylphosphatidylcholine, and L-alpha-phosphatidylcholine substituted with one saturated and one unsaturated fatty acid regardless of the substitution position. When L-alpha-phosphatidylcholine esterified with two saturated fatty acids was used as acyl donor, apo-A-IV was more active than apo-A-I in stimulating the lecithin:cholesterol acyltransferase reaction. Complexes of phosphatidylcholines substituted with two saturated fatty acids served as substrate for lecithin:cholesterol acyltransferase even in the absence of any activator protein. Essentially the same results were obtained when substrate complexes (phospholipid-cholesterol-[4-14C]cholesterol-apoprotein) were prepared by a detergent dialysis procedure. Apo-A-IV-L-alpha-dimyristoylphosphatidylcholine complexes thus prepared were shown to be homogeneous particles by column chromatography and density gradient ultracentrifugation. It is concluded that apo-A-IV is able to facilitate the lecithin:cholesterol acyltransferase reaction in vitro.  相似文献   

14.
The distribution of apolipoprotein A-I, apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein in fasting normal human plasma was determined by two-dimensional electrophoresis followed by immunoblotting. The synthesis and transfer of labeled cholesteryl esters generated in plasma briefly incubated with [3H]cholesterol-labeled fibroblasts was followed in terms of the lipoprotein species containing these antigens. Following the early appearance of labeled free cholesterol in two pre beta-migrating apolipoprotein A-I species (Castro, G. R., and Fielding, C. J. (1988) Biochemistry 27, 25-29), labeled esters were first detected, after a 2-min delay, in a third pre beta-migrating species which also contained apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein. Pulse-chase experiments determined that label generated in this fraction was the precursor of at least a major part of labeled cholesteryl esters in the bulk of alpha-migrating high density lipoprotein. Over the maximum time course of these experiments (15 min, 37 degrees C), less than 10% of labeled cholesteryl esters were recovered in low or very low density lipoproteins separated by electrophoresis, immunoaffinity, or heparin-agarose chromatography. These data suggest channeling of cell-derived cholesterol and cholesteryl esters derived from it through a preferred pathway involving several minor pre beta-migrating lipoproteins to alpha-migrating high density lipoprotein.  相似文献   

15.
Chinese hamster ovary cells transfected with the human apolipoprotein A-I gene linked to the human metallothionein gene promoter region secrete large quantities of apolipoprotein A-I (7.1 +/- 0.4% total secreted protein) in the presence of zinc. Approx. 16% of the secreted apolipoprotein A-I is complexed with lipid and can be isolated ultracentrifugally at d less than or equal to 1.21 g/ml. The latter complexes are composed of discs and vesicles as judged by electron microscopy and can be further separated by column chromatography into three fractions: fraction I, mostly vesicles (60-260 nm) and large discs (18-20 nm diameter); fraction II, discs 14.2 +/- 2.6 nm diameter; and fraction III, nonresolvable by electron microscopy. The latter fraction is extremely lipid-poor (94% protein, 6% phospholipid); in contrast, the protein, phospholipid and unesterified cholesterol content for the other fractions are 43, 33 and 24%, respectively, for fraction I and 53, 33 and 14%, respectively, for fraction II. Fraction II particles contain three and four apolipoprotein A-Is per particle as determined by protein crosslinking while large structures in fraction I contain primarily six to seven apolipoprotein A-Is per particle. Following incubation with purified lecithin: cholesterol acyltransferase, discoidal particles were transformed into apparent spherical particles 12.9 +/- 3.4 nm diameter; this transformation coincided with 19-21% conversion of unesterified cholesterol to esterified cholesterol. The apolipoprotein A-I-lipid complexes isolated from Chinese hamster ovary cell media are similar to nascent HDL found in plasma of lecithin:cholesterol acyltransferase-deficient patients and those secreted by the human hepatoma line, Hep G2. The ability of the Chinese hamster ovary cell nascent HDL-like particles to undergo transformation in the presence of purified lecithin:cholesterol acyltransferase indicates that they are functional particles.  相似文献   

16.
Lecithin-cholesterol acyltransferase (EC 2.3.1.43) was purified 15 000-fold from human plasma. The active material was homogeneous in different gel electrophoretic systems but separated into three major bands with apparent pI values of 4.28, 4.33 and 4.37 in isoelectrofocusing. The apparent Mr of the enzyme is 67 000 +/- 2000. An antiserum prepared against the purified enzyme specifically inhibited the activity of lecithin-cholesterol acyltransferase in whole serum. Serum from a patient with familial deficiency of lecithin-cholesterol acyltransferase was substituted in vitro with the highly purified enzyme. The serum from this patient did not contain immunochemically detectable enzyme protein. Substitution of enzyme resulted in the following major changes. 1. Cholesteryl ester content in serum increased by 36-89 mg/100 ml depending on the experimental conditions. The enzyme-mediated formation of cholesteryl ester led to an increase of cholesteryl ester content in high-density and very-low-density lipoproteins and in low-density lipoproteins containing apoprotein-B. No increase occurred in fractions containing very large flattened structures and the abnormal lipoprotein-X and in lipoprotein-E. Incubation of isolated fractions with lecithin-cholesterol acyltransferase led to significant cholesterol esterification only in high-density lipoproteins. 2. The characteristic disc-shaped rouleaux-forming high-density lipoproteins of enzyme-deficient serum disappeared. Instead a single homogeneous population of high-density lipoproteins formed. The particles generated were spherical and had the electrophoretic properties, density (1.080 g/ml), diameter (12.5 nm) and apoprotein composition of normal high-density lipoproteins-2. 3. The concentration of spherical particles containing apolipoprotein E (density 1.040-1.080 g/ml) and the lamellar lipoprotein-X-like structures in the low-density lipoprotein fraction were not affected by the enzyme substitution. 4. A single homogeneous population of spherical lipoprotein-B particles of 26.5-nm diameter occurred at density 1.029 g/ml. The data suggest that the discoidal high-density lipoproteins are the major site of cholesteryl ester formation that apolipoprotein-E is not involved in an undirectional transport of newly formed cholesteryl ester from high-density lipoproteins to other lipoproteins and that lipoprotein-X and lipoprotein-E are not preferential substrates for the acyltransferase.  相似文献   

17.
Serum lecithin:cholesterol acyltransferase (LCAT) was estimated by enzymatically measuring the decrease in unesterified cholesterol after incubation of serum with liposomes. A high-performance liquid chromatography (HPLC) study showed the uptake of the lipids of liposomes by serum high density lipoprotein. Of all the examined liposomes prepared from cholesterol and various synthetic phosphatidylcholines, liposomes with dimyristoylphosphatidylcholine (DMPC) were found to be the most reactive in the LCAT reaction. When serum was used as an enzyme source, addition of purified apolipoprotein A-I, which is known to be an endogenous activator of LCAT, to the assay mixture resulted in a slight decrease in enzyme activity. Using DMPC-cholesterol liposomes as the substrate, the LCAT activities in 120 human sera showed a mean value of 485.4 +/- 64.6 nmol/hr per ml (mean +/- SD), which is 4.4- to 5.4-fold higher than the values obtained by self-substrate methods. LCAT activity was a linear function of the serum sample volume up to 670 nmol/hr per ml and coefficients of variation (CV) less than 4% were obtained under the standardized conditions. Moreover, when partially purified LCAT was added to various heat-inactivated sera, the activity was efficiently recovered. These results suggest that this method is sensitive, reproducible, and not greatly influenced by serum components.  相似文献   

18.
Apolipoprotein A-I, the major structural polypeptide of human high-density lipoproteins, activates lecithin: cholesterol acyltransferase, the cholesterol ester-forming enzyme in plasma. Apolipoprotein A-I, like several other apolipoproteins, exhibits structural adaptability, which is manifest in a low free energy of stabilization and facile changes in secondary structure. We have investigated the dual effects of guanidinium chloride (GdmCl) and pressure perturbation at low GdmCl concentrations on apolipoproteins A-I conformational states, using fluorescence detection. Pressure alone (up to 3 kilobar) is insufficient to fully denature apolipoprotein A-I, and results in formation of metastable state(s). However, in conjunction with low concentrations of GdmCl the calculated volume change upon pressure denaturation increases from approx. -50 ml/mol to -90 ml/mol. The free energy of denaturation by pressure perturbation ranges from 1.4 to 1.8 kcal/mol, but the conformational states induced by pressure and GdmCl perturbation are most likely different. The physico-chemical properties of native and pressure-denatured conformational states can be, readily and reversibly, measured by fluorescence techniques. Biological activity of apolipoprotein A-I in the form of lecithin: cholesterol acyltransferase activation, is also reversible upon pressure perturbation. Samples of apolipoprotein A-I exposed to 2 kbar for an hour activated lecithin: cholesterol acyltransferase equally well as controls. To delineate more precisely the conformational states of apolipoprotein A-I under pressure, time-dependent anisotropy decay measurements, capable of resolving rotational heterogeneity, will be required.  相似文献   

19.
The ability of different human and rat brain cell lines (neuronal and gliomal) to secrete lecithin:cholesterol acyltransferase (LCAT) was examined. Of these, the strongly secreting human gliomal (U343 and U251) cell lines were selected for a detailed study of enzymatic and structural properties of the secreted LCAT. Both plasma- and brain-derived enzymes are inhibited by DTNB (90%) and are activated by apolipoprotein A-I. LCAT mRNA was measured in these cell lines at levels similar to that found in HepG2 cells. In contrast, apoA-I, apoE, and apoD mRNAs were undetectable in these cell lines. The presence of functional LCAT secreted by cultured nerve cells provides an in vitro model to study the expression and function of LCAT in the absence of others factors of plasma cholesterol metabolism.  相似文献   

20.
Micellar, discoidal complexes of human apolipoproteins A-I, A-II, C-I, C-II, C-III-1, and C-III-2 with egg phosphatidylcholine (egg-PC) and cholesterol were prepared by the cholate dialysis method. The complexes, isolated by gel filtration, had similar lipid and protein contents by weight, on the average: 1.77:0.083:1.0, egg-PC/cholesterol/apolipoprotein (w/w). The diameters of the discs, visualized by electron microscopy and estimated by gel filtration, ranged from 100 to 200 A. The alpha-helix content of the apolipoproteins in the complexes was from 50-72%, and their fluorescence properties indicated nonpolar, but quite varied environments for the tryptophan residues in the various complexes. Initial reactions of purified human lecithin: cholesterol acyltransferase with the complexes, adjusted to equal egg-PC concentrations, indicated that all the apolipoproteins activate the enzyme from 6-fold to 400-fold over control vesicles of egg-PC and cholesterol. In decreasing order of reactivity were the complexes with A-I, C-I, C-III-1, C-III-2, C-II, and A-II. These results indicate that aside from lipid-binding capacity and high amphipathic alpha-helix content, other structural features are required for optimal enzyme activation by apolipoproteins. Concentration and temperature dependence experiments gave similar apparent Km values, markedly different apparent Vmax, and very similar activation energies (about 19 kcal/mol), for the various complexes. These observations suggest that the rate-limiting enzymatic step of the reaction is common to all the complexes but that the activated enzyme levels differ from complex to complex. We propose that enzyme activation occurs upon binding to complexes via apolipoproteins. Addition of excess (5-fold) free apolipoprotein A-I or A-II to complexes resulted in the exchange of bound for free apolipoproteins and in loss of reactivity with the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号