首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Animal behaviour》1988,36(4):1136-1144
The sex ratio of Cyprinodon pecosensis was manipulated by varying the number of females but not of males. This resulted in some subordinate males changing their breeding tactics from satellites to territorials. The spawning success of breeding males was directly related, and the intensity of male-male competition was inversely related, to the number of available females. Time-budget data indicated a tradeoff between courtship and agonistic behaviour. In the male-biased treatment, males engaged in a greater number of agonistic interactions and fewer courtship bouts; conversely, in the female-biased treatment courtship behaviour was more frequent than aggression. A greater proportion of males adopted the satellite breeding tactic in the male-biased and even-sex-ratio treatments. Smaller, competitively inferior males were most sensitive to changes in the sex ratio. In the female-biased treatment, with an increase in mating opportunities and a decrease in the level of male-male competition for females, average mating success increased, more males were able to defend territories, and some satellite individuals were able to adopt the territorial breeding tactic. Temporal or spatial changes in the operational sex ratio of a population may have profound effects on the dynamics of the breeding system by affecting (1) the proportion of males adopting primary and secondary breeding tactics, (2) variance in reproductive success, and (3) intensity of sexual selection.  相似文献   

2.
Selective harvest regimes that create female-biased sex ratios can potentially lead to delayed breeding, reduced breeding synchrony, reduced productivity, and a female-biased sex ratio of offspring. These resulting changes in breeding behavior and population dynamics have potential to adversely affect population growth. In 2002, Pennsylvania implemented harvest regulation changes that reduced deer density (increased harvest of antlerless deer) and increased the number and age of antlered deer (implemented antler point restriction regulations) that resulted in a less female-biased sex ratio. We monitored date of conception, productivity (embryos/female), and sex ratio of embryos during 1999–2006 to test if timing of breeding occurred earlier and with greater synchrony, if productivity of females increased, and if the sex ratio of offspring would shift towards more males. Deer density decreased 23% and the adult (≥1.5 yr old) sex ratio declined from 2.30 to 1.95 females/male. The ratio of ≥2.5-year-old to 1.5-year-old males shifted towards more older males (1:3.7 in 2002 to 1:1.59 in 2006) and the ≥2.5-year-old male population increased from 41,853 during 1999–2001 to 54,064 by 2006. We found no evidence of any change in the timing or variability of date of conception, productivity, or offspring sex ratio. We conclude that harvest regulation changes implemented in Pennsylvania, USA, were insufficient to affect timing of breeding or population dynamics and that efforts by managers to identify a desired sex ratio or manipulate sex ratios to achieve management goals on a statewide scale will be challenging. © 2019 The Wildlife Society.  相似文献   

3.
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.  相似文献   

4.
Biased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster, using experimental evolution. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved under protein restriction. By contrast, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success. Males that evolved under protein restriction were relatively poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.  相似文献   

5.
During the breeding season an individual's access to mates may be affected by operational sex ratios, causing strong variation in mating success. We manipulated adult sex ratios of the European lobster, Homarus gammarus, to test the predictions of models that relate sexual competition to (1) the sex ratio, (2) the time that an individual is not available to mate and (3) 'collateral investment', whereby two males contribute to a single clutch. The model predictions proved to be relatively insensitive to collateral investment. Male-male competition predominated in the male-biased but not in the female-biased sex ratio. This matches the predictions of one model that incorporates an extended period of female receptivity because the time that a male was unavailable to mate was small compared to the time spent by females in cohabitation and parental care. Although females increased their competitiveness when males were in the minority, male competition remained high. The insensitivity of male-male competition to sex ratios may be due to an upper limit to the costs that males can afford when there is a serious risk of injury, preventing males from increasing their aggression when females are in short supply. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

6.
Breeding chronology, harem structure and changes in male harem dominance were studied at Stranger Point, Isla 25 de Mayo/King George Island, principally by extensive field census work during the 2003 breeding season. Males were individually identified and their size estimated by using a photogrammetric method. Peak female haul out for the population occurred on 31 October, when a total of 276 females were observed along 7 km of coastline, distributed in ten harems with a median size of 16 females. Overall sex ratio and harem sex ratio for the breeding population were 1:6.7 and 1:10.6, respectively. A total of 33 males were identified associated with harems. Male size conferred an advantage in terms of dominance hierarchy, since dominant males (4.91±0.15 m) were significantly longer than subordinate males (4.63±0.19 m). Harems were dominated by an average of 4.5 (range 2–7) different males during the breeding season. Elephant seals at Stranger Point breed in very low density aggregations. The main breeding events in this population occurred later than at other breeding sites, which agrees with previous observations in the area. Male movement among harems suggests that differences in mating success among males could be achieved through their different behaviours.  相似文献   

7.
The modes of intrasexual competition interacting in many dispersed societies of nocturnal solitary foragers are still poorly understood. In this study we investigate the spatial structure within a free-living population of gray mouse lemurs (Microcebus murinus) in order to test for the first time the predictions from two contrasting models of male intrasexual competition on the population level. The contest competition model predicts an uneven distribution of the sexes in a population nucleus with a female biased sex ratio in the center and a male biased sex ratio in the periphery. In contrast the scramble competition model predicts males and females being distributed evenly throughout their habitat with a constant sex ratio. Nine capture/recapture periods within three consecutive mating seasons revealed a continuous male biased sex ratio in the adult population with even trapping rates for the sexes. The male biased sex ratio could either be explained with postnatal female biased mortality or with a male biased natal sex ratio. This male biased sex ratio was apparent in all parts of the study site, indicating that the population was not subdivided into a female biased core and a male biased periphery. Furthermore, the majority of adult males have been captured at the same site as or in vicinity to females. Consequently, a large proportion of males had spatial access to females during the mating season. No signs of monopolization of females by certain dominant males could be detected. These data support the predictions from the scramble competition model and the concept of a promiscuous mating system for this species.  相似文献   

8.
In monogamous animals, males are usually the predominant competitors for mates. However, a strictly monogamous pipefish Corythoichthys haematopterus exceptionally exhibits a reversed sex role. To understand why its sex role is reversed, we measured the adult sex ratio and the potential reproductive rate (PRR), two principal factors influencing the operational sex ratio (OSR), in a natural population of southern Japan. The adult sex ratio was biased towards females throughout the breeding season, but the PRR, which increased with water temperature, did not show sexual difference. We found that an alternative index of the OSR (Sf/Sm: sex ratio of 'time in') calculated from the monthly data was consistently biased towards females. The female-biased OSR associated with sex-role reversal has been reported in some polyandrous or promiscuous pipefish, but factors biasing the OSR differed between these pipefish and C. haematopterus. We concluded that the similar PRR between the sexes in C. haematopterus does not confer reproductive benefit of polygamous mating on either sex, resulting in strict monogamous mating, and its female-biased adult sex ratio promotes female-female competition for a mate, resulting in sex-role reversal.  相似文献   

9.
Brood sex ratio in the Kentish plover   总被引:3,自引:0,他引:3  
How and why do the mating opportunities of males and femalesdiffer in natural population of animals? Previously we showedthat females have higher mating opportunities than males inthe Kentish plover Charadrius alexandrinus. Both parents incubatethe eggs, and males provide more brood care than females; thusit is not obvious why the females find new mates sooner thanthe males. In this study we investigated whether the sex-biasedmating opportunities stem from biased offspring sex ratios.We determined the sex of newly hatched, precocial chicks usingCHD gene markers. Among fully sexed broods, 0.461 ± 0.024(SE) of chicks (454 chicks in 158 broods) were male, and thissex ratio was not significantly different from unity. The proportionof males at hatching decreased significantly over the breedingseason, which occurred consistently in all 3 years of the study.Large chicks were more likely to be males than females. Neitherparental age nor body size of male and female parents was relatedto brood sex ratio. We also sexed a number of chicks that werecaught after they left their nest (range of estimated ages 0–17days) and found that the proportion of males increased withbrood age. This relationship remained highly significant whencontrolling statistically for hatching date. As brood size decreaseddue to mortality after the chicks left their nest, these resultssuggest that the mortality of daughters was higher than thatof the sons shortly after hatching. Taken together, our resultsshow that the female-biased mating opportunities in the Kentishplover are not due to biased brood sex ratio at hatching but,at least in part, are due to female-biased chick mortality soonafter hatching.  相似文献   

10.
Operational sex ratio (OSR), the ratio of sexually active males to fertilizable females in a population, plays a central role in the theory of mating systems by predicting that the intensity of male–male competition and the degree of sexual selection increases as the OSR becomes increasingly male biased. At high values of OSR, however, resource defence theory predicts the breakdown of territoriality and a shift towards scramble competition with a decrease in sexual selection. The direction that correlations between OSR and resource competition and variance in mating success will take depends on the biology of the species of interest. We investigated the effects of male population density and male‐biased operational sex ratio on male mating tactics shown by a freshwater fish, the European bitterling, Rhodeus sericeus . This species spawns inside living unioneid mussels. Large males defended territories, were aggressive towards conspecifics under equal sex ratios and monopolized pair spawnings with females. The mating tactic, however, changed at high male density where large males ceased to be territorial and instead competed with groups of smaller males to release sperm when females spawned. This change in male behaviour from pair to group spawning has two ramifications for sexual selection. The intensity of sexual selection and variance in male mating success decrease, and the form of sexual competition changes from resource‐ to sperm competition. Thus, the use of alternative mating tactics renders the OSR unable to predict the direction of resource competition and variance in male mating success at high densities.  相似文献   

11.
Male parents face a choice: should they invest more in caring for offspring or in attempting to mate with other females? The most profitable course depends on the intensity of competition for mates, which is likely to vary with the population sex ratio. However, the balance of pay‐offs may vary among individual males depending on their competitive prowess or attractiveness. We tested the prediction that sex ratio and size of the resource holding male provide cues regarding the level of mating competition prior to breeding and therefore influence the duration of a male's biparental caring in association with a female. Male burying beetles, Nicrophorus vespilloides were reared, post‐eclosion, in groups that differed in sex ratio. Experimental males were subsequently translocated to the wild, provided with a breeding resource (carcass) and filmed. We found no evidence that sex ratio cues prior to breeding affected future parental care behaviour but males that experienced male‐biased sex ratios took longer to attract wild mating partners. Smaller males attracted a higher proportion of females than did larger males, securing significantly more monogamous breeding associations as a result. Smaller males thus avoided competitive male–male encounters more often than larger males. This has potential benefits for their female partners who avoid both intrasexual competition and direct costs of higher mating frequency associated with competing males.  相似文献   

12.
The gregarious parasitoid Cotesia glomerata (L.) is often presumed to possess the characteristic attributes of a species that manifests local mate competition (LMC), as it commonly produces female-biased broods. However, our field surveys of sex ratio and laboratory observations of adult behaviour showed that this species is subject to partial local mate competition caused by natal dispersal. On average, 30% of males left their natal patch before mating, with the proportion of dispersing males increasing with an increase in the patch's sex ratio (i.e. proportion of males). Over 50% of females left their natal patch before mating, and only 27.5% of females mated with males emerging from the same natal patch. Although females showed no preference between males that were and were not their siblings, broods from females that mated with siblings had a significantly higher mean brood sex ratio (0.56) than broods from females that mated with nonsiblings (0.39). Furthermore, brood sex ratios increased as inbreeding was intensified over four generations. A field population of this wasp had a mean brood sex ratio of 0.35 over 3 years, which conformed well to the evolutionarily stable strategy sex ratio (r=0.34) predicted by Taylor's partial sibmating model for haplodiploid species. These results suggest that the sex allocation strategy of C. glomerata is based on both partial local mate competition in males and inbreeding avoidance in females. In turn, this mating system plays a role in the evolution of natal dispersal behaviour in this species.Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

13.
Intraspecific larval competition is commonly believed to be the major component of egg-to-adult mortality in bark beetles. Larval mortality is usually shown to be density dependent. In this study I looked specifically at competition among females in the same gallery system, in a sparse but highly female-biased population of Ips acuminatus breeding in cut pine branches near Kongsberg, southeastern Norway. Supplementary data from a slightly female-biased population in western Norway and a population with intermediate female bias in W. Germany are also provided. Survivorship from egg to adult or pupa was measured in laboratory experiments, for the area in which larvae from different arms potentially competed relative to survivorship in areas away from competition. Survivorship was significantly correlated with both average interarm distance (r2= 0.76) and food per larva (cm2 per larva: r2= 0.73). There was no evidence that females could detect the presence of other, nearby egg arms: neither egg spacing (on the arm sides nearest each other) nor interarm distance increased when two arms were near each other. Nor did females distribute themselves optimally within harems, though the distribution of egg arms within harems was significantly different from that expected from random settling. analysis of interarm distances and harem sizes in 1984 branches revealed that a minimum of 34% of arm sides could be expected to suffer considerably reduced larval survivorship due to within-harem competition. Harem size in Ips typographus is reviewed, and data on the distribution of females within harems is presented for Norwegian populations of I. Typographus, Orthotomicus erosus and O. laricis. Evidence from the literature is presented to show that uneven distribution of females between harem sides is not uncommon. I suggest that the findings for Ips acuminatus are applicable to a wide range of harem polygynous scolytids, including I. typographus: the factors influencing density cannot be fully understood without taking into account the distribution of females among males and the distribution of females within harems.  相似文献   

14.
The amphipod Caprella gorgonia Laubitz & Lewbel is an obligate commensal on gorgonian octocorals. Its primary host is Lophogorgia chilensis (Verrill), found below 20 m.C. gorgonia breeds throughout the year, with wide fluctuations in abundance. Mating and oviposition follow molting. Sex reversal does not occur; two distinct sexes are present from the first instar after emergence from the brood pouch.Young males and females grow at approximately the same rate, but males are larger by a relatively constant increment. Males continue to grow at their original rate to a maximum size (about twice that of females). The growth rate of females is not limited by the onset of reproduction and brooding, but rather by an approach to maximum size when the rate is greatly reduced. Fecundity of females is not affected by size.The population sex ratio is about 1:3 (males:females), and about 1:4 among adults. The secondary sex ratio is 1:1. The post-emergence sex ratio bias is a result of heavier mortality among males. Sex ratios drop from 50% at emergence to 25% as females approach maximum size, then rise to 100% in larger size classes.Differential predation on males did not appear to be a source of any sex ratio bias. Adult males possess a “poison spine”, a puncturing weapon on the large second gnathopod, which functions in mating-related intraspecific combat with other males. Intraspecific male aggression during mating is a major cause of sex ratio bias. In the laboratory, increased density in breeding groups may affect mortality due to male aggression. In nature, adult sex ratios are negatively correlated with population density. The reproductive capacity of the population is not limited by a shortage of adult males, despite the low adult sex ratio.  相似文献   

15.
In polygynous mating systems, males compete intensely for mates and may mate several females during a single reproductive season. Accordingly, factors influencing the ability of males to control a larger number of females during the breeding season can provide information on the processes underlying sexual selection. In ungulates, age, body mass and social rank are considered good predictors of the reproductive success of males, but how male age structure and sex ratio in the population influence mating group (MG) dynamics has received little empirical testing. Between 1996 and 2005, we manipulated male age‐ and sex structure and monitored MG dynamics in a reindeer (Rangifer tarandus) population. We investigated the influence of male characteristics, percentage of males and male age structure on MG size and stability. We found that males with higher social rank (that were also older and heavier) controlled larger MGs (therefore had greater mating opportunities) and had more stable MGs (corresponding to a higher ability to maintain and control females) than males of lower social rank. Moreover, MG size and MG stability decreased as the percentage of males in the population increased, most likely resulting from greater male–male competition and increased female movements. Male age structure did not influence MG stability. Given the positive relationship between mating success and MG size (and likely MG stability), frequent female movements and intense competition among males to control females seem to be the principal components of reindeer MGs dynamic.  相似文献   

16.
Ecological and social factors underpinning the inequality of male mating success in animal societies can be related to sex ratio, sexual conflict between breeders, effects of nonbreeders, resource dispersion, climatic conditions, and the various sequential stages of mating competition that constitute the sexual selection process. Here, we conducted an individual‐based study to investigate how local resource availability and demography interact with annual climate conditions to determine the degree of male mating inequality, and thus opportunity for sexual selection across two sequential reproductive episodes (harem and subsequent mate acquisition) in a naturally regulated (feral) horse population in Sable Island National Park Preserve, Canada. Using a 5‐year, spatially explicit, mark‐resight dataset and hierarchical mixed‐effects linear modeling, we evaluated the influence of adult sex ratio (ASR) on mating success and then tested for effects of freshwater availability, density, unpaired male abundance, and precipitation during each breeding season. Unpaired male abundance, freshwater availability, and ASR differed in their effects on male mating success according to year and selection episode. Opportunity for sexual selection in males associated with harem acquisition increased with ASR, and unpaired male abundance further explained weather‐related interannual variation after accounting for ASR. In contrast, once a harem was secured, ASR had little effect on male mating inequality in regard to acquiring additional females, while interannual variation in mating inequality increased with decreasing freshwater availability. Our findings show that local demography, resource availability, and weather effect opportunity for sexual selection in males differently depending on selection episode, and can attenuate or accentuate effects of ASR.  相似文献   

17.
Sex differences in adult mortality may be responsible for male‐skewed adult sex ratios and male‐skewed parental care in some birds. Because a surplus of breeding males has been reported in serially polyandrous populations of Snowy Plover Charadrius alexandrinus, we examined sex ratio, early‐season nesting opportunities, adult survival and annual reproductive success of a Snowy Plover population at Monterey Bay, California. We tested the hypotheses that male adult survival was greater than female survival and that a sex difference in adult survival led to a skewed adult sex ratio, different mating opportunities and different annual productivity between the sexes. Virtually all females left chicks from their first broods to the care of the male and re‐nested with a new mate. As a result, females had time to parent three successful nesting attempts during the lengthy breeding season, whereas males had time for only two successful attempts. Among years, the median population of nesting Plovers was 96 males and 84 females (median difference = 9), resulting in one extra male per eight pairs. The number of potential breeders without mates during the early nesting period each year was higher in males than in females. Adult male survival (0.734 ± 0.028 se) was higher than female survival (0.693 ± 0.030 se) in top‐ranked models. Annually, females parented more successful clutches and fledged more chicks than their first mates of the season. Our results suggest that in C. alexandrinus a sex difference in adult survival results in a male‐skewed sex ratio, which creates more nesting opportunities and greater annual productivity for females than for males.  相似文献   

18.
Female-biased sex ratio in local mate competition has been well studied both theoretically and experimentally. However, some experimental data show more female-biased sex ratios than the theoretical predictions by Hamilton [1967. Science 156, 477-488] and its descendants. Here we consider the following two effects: (1) lethal male-male combat and (2) time-dependent control (or schedule) of sex ratio. The former is denoted by a male mortality being an increasing function of the number of males. The optimal schedule is analytically obtained as an evolutionarily stable strategy (ESS) by using Pontrjagin's maximum principle. As a result, an ESS is a schedule where only males are produced first, then the proportion of females are gradually increased, and finally only females are produced. Total sex ratio (sex ratio averaged over the whole reproduction period) is more female-biased than the Hamilton's result if and only if the two effects work together. The bias is stronger when lethal male combat is severer or a reproduction period is longer. When male-male combat is very severe, the sex ratio can be extraordinary female-biased (less than 5%). The model assumptions and the results generally agree with experimental data on Melittobia wasps in which extraordinary female-biased sex ratio is observed. Our study might provide a new basis for the evolution of female-biased sex ratios in local mate competition.  相似文献   

19.
Prohl  Heike 《Behavioral ecology》2002,13(2):175-181
In this study I examined the relationship among abundance ofreproductive resources, population density, and adult sex ratioin the strawberry dart-poison frog, Dendrobates pumilio, andhow these variables in turn influence the mating system, malereproductive success, and sexual selection. I studied the matingbehavior in two populations of D. pumilio living in a primaryand secondary rainforest on the Caribbean slope of Costa Rica.The abundance of tadpole-rearing sites (reproductive resourcesfor females) was approximately 10-fold higher in the secondary forest. Accordingly, the population density was higher and theadult sex ratio was strongly female biased in the secondaryforest, whereas the adult sex ratio was even in the primaryforest. The female-biased sex ratio was associated with a higherlevel of polygyny and higher male mating and reproductive successin the secondary forest. In contrast, the level of polyandrydid not differ between habitats. As expected, the opportunityfor sexual selection on male mating success was lower in thesecondary forest, the habitat with high female density. Inconclusion, my results suggest that ecological variables suchas resource availability have a great impact on the matingsystem and sexual selection through their effect on population structure. Moreover, the results of this study give furtherevidence that the opportunity for sexual selection is influencedby the adult sex ratio and hence by the operational sex ratioin a population.  相似文献   

20.
Between-individual variance in potential reproductive rate theoretically creates a load in reproducing populations by driving sexual selection of male traits for winning competitions, and female traits for resisting the costs of multiple mating. Here, using replicated experimental evolution under divergent operational sex ratios (OSR, 9:1 or 1:6 ♀:♂) we empirically identified the parallel reproductive fitness consequences for females and males in the promiscuous flour beetle Tribolium castaneum. Our results revealed clear evidence that sexual conflict resides within the T. castaneum mating system. After 20 generations of selection, females from female-biased OSRs became vulnerable to multiple mating, and showed a steep decrease in reproductive fitness with an increasing number of control males. In contrast, females from male-biased OSRs showed no change in reproductive fitness, irrespective of male numbers. The divergence in reproductive output was not explained by variation in female mortality. Parallel assays revealed that males also responded to experimental evolution: individuals from male-biased OSRs obtained 27% greater reproductive success across 7-day competition for females with a control male rival, compared to males from the female-biased lines. Subsequent assays suggest that these differences were not due to postcopulatory sperm competitiveness, but to precopulatory/copulatory competitive male mating behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号