首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Conversion to adipocytes and fatty acid composition were investigated in a clonal bone marrow preadipocyte line (H-1/A). The growing cells exhibited a fibroblastic appearance. After the cessation of growth, triacylglyceride (TG) synthesis in the cells increased as they incorporated precursor from the growth medium and became adipocytes. Hydrocortisone and insulin accelerated the TG synthesis in H-1/A cells in a dose-dependent manner when they were cultured in the growth medium containing 10% horse serum. The rate of conversion to adipocytes was reduced as the concentration of horse serum was decreased, and this reduction was not influenced by the addition of insulin and/or hydrocortisone. These results suggest that conversion to adipocytes of H-1/A cells is primarily dependent on some component(s) of the serum. Conversion to adipocytes of the cells may involve a process of differentiation since the conversion was completely inhibited when the cells were cultured in the presence of bromodeoxyuridine. Fatty acid composition was significantly different between adipose H-1/A cells and adipocytes derived from other marrow preadipocyte line MC3T3-G2/PA6 cells. Unsaturated fatty acids accounted for 76% of the fatty acid composition of adipose H-1/A cells; in contrast, saturated fatty acids constituted 65% of the fatty acid composition of the adipose MC3T3-G2/PA6 cells. These results suggest that there is a heterogeneity of preadipocytes in bone marrow. These two preadipocyte lines thus provide a useful tool for the study of marrow adipocytes and can also be used to analyze the hematopoietic microenvironment through studies of the effect of these cells on hematopoietic cell proliferation.  相似文献   

2.
Adipose conversion of 3T3-L1 cells by inducers (dexamethasone, 1-methyl-3-isobutylxanthine and insulin) was inhibited by LiCl at concentrations from 2 to 20 mM. The effect of LiCl was reversible and the inhibited cells were converted to adipocytes when stimulated after the removal of LiCl. Inhibition by LiCl of adipose conversion was accompanied with a blockage of the enhanced [3H]thymidine incorporation and cellular proliferation that occurred before the adipocyte phenotype was expressed. Of the cations tested, only Li+ had these effects.  相似文献   

3.
The correlation between adipose conversion of cloned H-1 cells (H-1/A) and their production of colony-stimulating activity (CSA) was examined. The production of CSA from H-1/A cells declined after adipose conversion, although H-1/A cells are active producers of CSA during their fibrocytic stage. The addition of 2 X 10(-5) M 5-bromo-2'-deoxyuridine to the cultures almost completely inhibited adipose conversion and there was no reduction of CSA levels after 9 days of culture. On the other hand, the addition of 10(-6) M hydrocortisone sodium succinate to the culture markedly enhanced adipose conversion, and a greater reduction in the CSA level was observed in the supernatants than in the control cultures after 12 days of culture. Indomethacin had no effect on the production of CSA or on adipose conversion. Furthermore, there were no significant differences between the CSA levels of nondialyzed supernatants and dialyzed supernatants from the control cultures during the entire course of the experiment. Supernatants during the adipocyte stage of H-1/A cultures did not inhibit the CSA derived from the fibrocytic stage. There were no differences in colonies in agar cultures stimulated by supernatants derived from cultures that had undergone either of the above treatments. These results suggest that the reduction of CSA is not due to the production of inhibitors, but that the production of CSA declines after adipose conversion of H-1/A cells. Preadipocytes in bone marrow therefore appear to contribute to granulopoiesis during the fibrocytic stage and are hematopoietically inactive when they convert to adipocytes.  相似文献   

4.
Human adipose tissue expresses all the components necessary for the production of angiotensin peptides. Although local effects of angiotensin II on cells from adipose tissue are beginning to be recognised, the expression of angiotensin receptors on human preadipocytes and adipocytes is still controversial. This study addresses the issue by monitoring the mRNA levels as well as the protein production of angiotensin II receptors of type 1 and 2 (AT 1 and AT 2 ) during differentiation of primary human preadipocytes in culture and in mature adipocytes. mRNA levels of the two receptor types are inversely correlated during adipose conversion. AT 1 receptor mRNA is greatly diminished within 12 days after induction of differentiation, while AT 2 receptor mRNA is elevated. mRNA levels of mature adipocytes confirm this trend. The regulation is not seen as strongly on the protein level. The amount of AT 2 receptor protein is increased, correlating well with the rise in specific glycerol-3-phosphate dehydrogenase activity of the cells, but the AT 1 receptor protein does not vary during the whole differentiation period. As the functional role of AT 2 receptors in adipose tissue is not known to date, further studies have to show if the AT 1 -mediated inhibitory actions on adipose conversion are downregulated in differentiating cells through decreased AT 1 /AT 2 receptor ratio.  相似文献   

5.
6.
Adipose tissue is a target for cardiotrophin-1 (CT-1), a cytokine member of the IL-6 family of cytokines that is involved in cardiac growth and dysfunction. However, it is unknown whether adipocytes are a source of CT-1 and whether CT-1 is overexpressed in diseases characterized by increased fat depots [i.e., the metabolic syndrome (MS)]. Thus this work aimed 1) to test whether adipose tissue expresses CT-1 and whether CT-1 expression can be modulated and 2) to compare serum CT-1 levels in subjects with and without MS diagnosed by National Cholesterol Education Program Adult Treatment Panel III criteria. Gene and protein expression of CT-1 was determined by real-time RT-PCR, ELISA, and Western blotting. CT-1 expression progressively increased, along with differentiation time from preadipocyte to mature adipocyte in 3T3-L1 cells. CT-1 expression was enhanced by glucose in a dose-dependent manner in these cells. mRNA and protein CT-1 expression was also demonstrated in human adipose biopsies. Immunostaining showed positive staining in adipocytes. Finally, increased CT-1 serum levels were observed in patients with MS compared with control subjects (127 +/- 9 vs. 106 +/- 4 ng/ml, P < 0.05). Circulating levels of CT-1 were associated with glucose levels (r = 0.2, P < 0.05). Taken together, our data suggest that adipose tissue can be recognized as a source of CT-1, which could account for the high circulating levels of CT-1 in patients with MS.  相似文献   

7.
We studied the commitment of 3T3-F442A cells during stimulation with adipogenic serum or growth hormone. Confluent 3T3-F442A preadipocytes were incubated with adipogenic medium for increasing times; the number of adipose clusters, GPDH activity, and lipid accumulation were evaluated. Results show that cell commitment took place during the first 24-36 h after stimulation under adipogenic conditions. Then, cultures underwent a 2-fold increase in total cell number through selective multiplication of committed cells, followed by a dramatic decrease in colony-forming ability and 300- to 1000-fold raise in GPDH activity. Cell commitment was not modulated by insulin, but this hormone stimulated clonal expansion of committed cells and lipogenesis. Commitment was inhibited by TNF-alpha at concentrations as low as 5 ng/ml, and by retinoic acid. The results show that TNF-alpha inhibits adipose conversion at two different levels: at concentrations as low as 5 ng/ml, it blocks commitment, and at concentrations of 100 ng/ml or higher the cytokine seems to block mitotic expansion and other steps of differentiation after cell commitment. The identification of a specific time for cell commitment would allow the study of the early genes that might regulate cell reprogramming into adipocytes.  相似文献   

8.
9.
Triiodothyronine added at 0.1 nM to 3T3-F442A cells cultured in adipogenic medium having endogenous hormone concentrations similar to those of hypothyroid serum stimulated adipose conversion; activities of both lipogenic enzymes, glycerophosphate dehydrogenase and malic enzyme, increased with hormone treatment. The number of adipocytes was also augmented by L-T3 addition but the number of fat cell clusters remained the same as compared to non-treated cultures, suggesting that thyroid hormone increased the number of adipocytes probably through stimulating selective multiplication of precursor adipose cells. Hormone addition to cells cultured with non-adipogenic medium did not promote conversion showing that L-T3 is not an adipogenic factor by itself. Triiodothyronine added at concentrations similar to those found in hyperthyroidism, from 10 nM up to 10 µM, also increased the proportion of adipocytes without changing the number of fat cell clusters, but they decreased the activity of both lipogenic enzymes and lipid accumulation in mature adipocytes. It can be concluded that during 3T3-F442A differentiation into adipocytes L-T3 increases the number of differentiated adipocytes and, at low concentrations, also enhances lipogenic enzyme activities, whereas at the hyperthyroid hormone levels these enzyme activities are significantly reduced, remaining at levels similar to those of cells cultured with hypothyroid medium. This cloned cell line seems to be a useful model to study thyroid hormone action at both molecular and cellular level.  相似文献   

10.
The aim of this study was to determine the mechanism of troglitazone action on nitric oxide (NO) production via inducible NO synthase (iNOS) in adipocytes in vitro and in vivo. The treatment of 3T3-L1 adipocytes with the combination of lipopolysaccharide (LPS), tumor necrosis factor-alpha and interferon-gamma synergistically induced de novo iNOS expression leading to enhanced NO production. The NO production was inhibited by co-treatment with aminoguanidine or N-nitro-L-arginine methylester hydrochloride. Troglitazone inhibited the NO production in a dose dependent manner by the suppression of iNOS expression. In the 24 week-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats, the mean weight and the blood glucose were 21% and 30%, respectively, higher than in their lean counterparts. The serum nitrite concentration was increased after injection of LPS (4 mg/kg, i.p.), more markedly in OLETF rats than in the lean rats. The epididymal fats from LPS-injected groups, but not the ones from the non-injected groups, expressed mRNA and protein of iNOS. Troglitazone pre-treatment blocked the LPS-induced expression of iNOS in adipose tissue and the increase in serum nitrite concentration. These results suggest that troglitazone inhibits the cytokine-induced NO production in adipocytes by blocking iNOS expression both in vitro and in vivo.  相似文献   

11.
We studied the commitment of 3T3-F442A cells during stimulation with adipogenic serum or growth hormone. Confluent 3T3-F442A preadipocytes were incubated with adipogenic medium for increasing times; the number of adipose clusters, GPDH activity, and lipid accumulation were evaluated. Results show that cell commitment took place during the first 24-36 h after stimulation under adipogenic conditions. Then, cultures underwent a 2-fold increase in total cell number through selective multiplication of committed cells, followed by a dramatic decrease in colony-forming ability and 300- to 1000-fold raise in GPDH activity. Cell commitment was not modulated by insulin, but this hormone stimulated clonal expansion of committed cells and lipogenesis. Commitment was inhibited by TNF-α at concentrations as low as 5 ng/ml, and by retinoic acid. The results show that TNF-α inhibits adipose conversion at two different levels: at concentrations as low as 5 ng/ml, it blocks commitment, and at concentrations of 100 ng/ml or higher the cytokine seems to block mitotic expansion and other steps of differentiation after cell commitment. The identification of a specific time for cell commitment would allow the study of the early genes that might regulate cell reprogramming into adipocytes.  相似文献   

12.
Resistin release by human adipose tissue explants in primary culture   总被引:16,自引:0,他引:16  
Resistin, also known as Fizz3 or ADSF, is a protein found in murine adipose tissue and inflammatory lung exudates. The present studies found that resistin was released by explants of human adipose tissue but the release was quite variable ranging from 3 to 158 ng/g over 48 h. The release of resistin was 250% greater by explants of omental than by explants of human subcutaneous abdominal adipose tissue. Resistin release by adipocytes was negligible as compared to that by the non-fat cells of adipose tissue. Leptin formation by adipocytes was 8-fold greater than its formation by the non-fat cells, while the formation of PAI-1 by adipocytes was 38% of that by the non-fat cells. The conversion of glucose to lactate as well as the formation of PGE(2) and IL-8 was approximately 15% of that by the non-fat cells. In contrast the release of IL-6 and IL-1beta by adipocytes was 4-7% of that by the non-fat cells while the formation of resistin and IL-10 by adipocytes was 2% of that by non-fat cells. The release of adiponectin by explants ranged from 1000 to 5000 ng/g over 48 h but did not correlate with that of resistin. The present data suggest that resistin release by explants of human adipose tissue in primary culture is largely derived from the non-fat cells present in the explants.  相似文献   

13.
Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells.  相似文献   

14.
15.
Summary The effects of collagenous substrata, fibronectin, and fetal bovine serum on the adhesion, proliferation, and adipogenesis of rat stromal-vascular cells are reported. There was no effect on initial stromal-vascular cell-attachment by fetal bovine serum or fibronectin. The number of cells attached to a hydrated collagen-gel was almost twice (P<0.04) the number attached to dried collagen-gel or dried denatured collagen-gel. Total number of cells after 5 days in culture was similar among the collagenous substrata and among the treatments with or without fibronectin in the growth media. Total number of cells increased significantly (P<0.02) with 10% FBS. Adipocytic formation was inhibited by hydrated collagen-gel (P<0.02) compared to dried collagen-gel or dried, denatured collagenous substrata. An interaction occurred between dried, denatured gel and fetal bovine serum so that total formation of adipocytes increased by increasing the level of fetal bovine serum (P<0.07). Adipocytic formation was inhibited by hydrated collagen-gel at all levels of fetal bovine serum. The percentage of cells that converted to adipocytes was significantly lower (P<0.01) on hydrated collagen-gel compared to dried, denatured or dried collagen-gel. Percentage of conversion was not significantly different among levels of fetal bovine serum, although this percentage increased as fetal bovine serum level increased. Adipocytic conversion was not different between fibronectin-treated or untreated cells. Morphology of stromal vascular cells was similar on dried collagen and dried, denatured collagen-gel, but tended to remain bipolar on hydrated collagen-gel. These studies indicate that fetal bovine serum in combination with the extracellular matrix (dried, denatured collagen) increased the differentiation of rat stromal-vascular cells into adipocytes, and that hydrated collagen inhibited differentiation.  相似文献   

16.
Adipose cells are extrathyroidal targets of thyroid-stimulating hormone (TSH). TSH stimulates interleukin-6 (IL-6) release from adipocytes. We examined TSH responsiveness as a function of stage of differentiation or adipose tissue depot in cultured adipose cells and determined the effect of TSH on extrathyroidal IL-6 production in vivo. Stromal preadipocytes, isolated from human abdominal subcutaneous or omental adipose tissue, and their differentiated counterparts were studied. IL-6 protein concentration in the medium was measured after TSH stimulation. Basal IL-6 release was greater for preadipocytes than differentiated adipocytes, whether derived from subcutaneous or omental fat depots. A depot-dependent effect (omental > subcutaneous) on basal IL-6 release was observed for preadipocytes (1.6-fold, P < 0.05); a similar trend for differentiated adipocytes was not significant (6.2-fold, P > 0.05). IL-6 responsiveness to TSH was observed upon differentiation, but only for subcutaneous adipocytes (1.9-fold over basal, P < 0.001). To determine if TSH could stimulate IL-6 release from extrathyroidal tissues in vivo, we measured serum IL-6 levels from five thyroidectomized patients who received recombinant human (rh) TSH and found that levels increased by threefold on days 3 and 4 (P < 0.05) after its administration. Our data demonstrate that stage of differentiation and fat depot origin affect basal and TSH-stimulated IL-6 release from adipose cells in culture. Furthermore, rhTSH elevates serum IL-6 response in thyroidectomized patients, indicating an extrathyroidal site of TSH action.  相似文献   

17.
Adipose tissue is a crucial site for pathologic changes in obesity/metabolic syndrome-related diseases. Interaction between adipogenesis and reactive oxygen species (ROS) in adipose tissue involving chronic low-grade inflammation is postulated to be causal in the development of insulin resistance and other metabolic consequences. We used different culture systems to investigate the relationship between ROS and adipogenesis at three levels: within adipocytes, during adipocyte-monocyte interactions, and in a subcutaneous adipose tissue model. The effects of highly hydroxylated fullerene (HHF; C60(OH)36) on adipogenesis-accompanying oxidative stress and inflammatory changes were examined using these three systems. We demonstrated that H2O2 stimulates lipid accumulation in 3T3-L1 preadipocytes, and lipid uptake causes ROS generation in OP9 preadipocytes, both of which were then markedly suppressed with HHF treatment. HHF significantly inhibited the adipogenic stimulant insulin-rich serum replacement (SR)-induced triacylglycerol accumulation, ROS production, and macrophage activation in cultured OP9 cells and an OP9-U937 monocyte-like cell coculture system. H2O2-induced intracellular ROS production in OP9 adipocytes was also notably inhibited by HHF. We developed a three-dimensional subcutaneous adipose-tissue equivalent (SATE) consisting of air-exposed cultures of HaCaT keratinocytes on an OP9 adipocyte-populated collagen gel in a culture insert. With SR stimulation and under suitable conditions, fat accumulation, ROS generation, and macrophage infiltration were observed in the SATE and significantly inhibited by HHF. By western blotting, we demonstrated that HHF localized at the cytoskeleton, which controls the transport of lipids. In conclusion, HHF is able to inhibit oxidative stress in adipocytes and adipogenesis-related macrophage activation in adipose tissues through its antioxidation.  相似文献   

18.
Masoprocol (nordihydroguaiaretic acid), a lipoxygenase inhibitor isolated from the creosote bush, has been shown to decrease adipose tissue lipolytic activity both in vivo and in vitro. The present study was initiated to test the hypothesis that the decrease in lipolytic activity by masoprocol resulted from modulation of adipose tissue hormone-sensitive lipase (HSL) activity. The results indicate that oral administration of masoprocol to rats with fructose-induced hypertriglyceridemia significantly decreased their serum free fatty acid (FFA; P < 0.05), triglyceride (TG; P < 0.001), and insulin (P < 0.05) concentrations. In addition, isoproterenol-induced lipolytic rate and HSL activity were significantly lower (P < 0.001) in adipocytes isolated from masoprocol compared with vehicle-treated rats and was associated with a decrease in HSL protein. Incubation of masoprocol with adipocytes from chow-fed rats significantly inhibited isoproterenol-induced lipolytic activity and HSL activity, associated with a decrease in the ability of isoproterenol to phosphorylate HSL. Masoprocol had no apparent effect on adipose tissue phosphatidylinositol 3-kinase activity, but okadaic acid, a serine/threonine phosphatase inhibitor, blocked the antilipolytic effect of masoprocol. The results of these in vitro and in vivo experiments suggest that the antilipolytic activity of masoprocol is secondary to its ability to inhibit HSL phosphorylation, possibly by increasing phosphatase activity. As a consequence, masoprocol administration results in lower serum FFA and TG concentrations in hypertriglyceridemic rodents.  相似文献   

19.
The activity of cAMP-dependent protein kinase and cAMP binding activity were studied during the differentiation of ST 13 murine preadipocytes into adipocytes. We found that both activities were marginally detectable in preadipose cells and increased remarkably when the cells were induced to differentiate, preceding by several days the morphological adipose conversion. The increased cAMP-dependent protein kinase was identified as type II enzyme by means of DEAE-Sephacel chromatography and by photoaffinity labeling with 8-azido[3H]cAMP. We further showed that the increase of protein kinase activity was specific to cell differentiation with the aid of modulators of the adipose conversion (insulin, fetal bovine serum, retinoic acid and 5-bromodeoxy-uridine). We propose that the increased expression of type II cAMP-dependent protein kinase would be a biochemical index of differentiation in ST 13 preadipocytes.  相似文献   

20.
A 12.5-kDa cysteine-rich adipose tissue-specific secretory factor (ADSF/resistin) is a novel secreted protein rich in serine and cysteine residues with a unique cysteine repeat motif of CX(12)CX(8)CXCX(3)CX(10)CXCXCX(9)CC. A single 0.8-kilobase mRNA coding for this protein was found in various murine white adipose tissues including inguinal and epididymal fats and also in brown adipose tissue but not in any other tissues examined. Two species of mRNAs with sizes of 1.4 and 0.8 kilobases were found in rat adipose tissue. Sequence analysis indicates that this is because of two polyadenylation signals, the proximal one with the sequence AATACA with a single base mismatch from murine AATAAA and the distal consensus sequence AATAAA. The mRNA level was markedly increased during 3T3-L1 and primary preadipocyte differentiation into adipocytes. Its expression in adipose tissue is under tight nutritional and hormonal regulation; the mRNA level was very low during fasting and increased 25-fold when fasted mice were refed a high carbohydrate diet. It was also very low in adipose tissue of streptozotocin-diabetes and increased 23-fold upon insulin administration. Upon treatment with the conditioned medium from COS cells transfected with the expression vector, conversion of 3T3-L1 cells to adipocytes was inhibited by 80%. The regulated expression pattern suggesting this factor as an adipose sensor for the nutritional state of the animals and the inhibitory effect on adipocyte differentiation implicate its function as a feedback regulator of adipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号