首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral pathogens continue to emerge among humans, domesticated animals and cultivated crops. The existence of genetic variance for resistance in the host population is crucial to the spread of an emerging virus. Models predict that rapid spread decreases with the frequency and diversity of resistance alleles in the host population. However, empirical tests of this hypothesis are scarce. Arabiodpsis thaliana—tobacco etch potyvirus (TEV) provides an experimentally suitable pathosystem to explore the interplay between genetic variation in host''s susceptibility and virus diversity. Systemic infection of A. thaliana with TEV is controlled by three dominant loci, with different ecotypes varying in susceptibility depending on the genetic constitution at these three loci. Here, we show that the TEV adaptation to a susceptible ecotype allowed the virus to successfully infect, replicate and induce symptoms in ecotypes that were fully resistant to the ancestral virus. The value of these results is twofold. First, we showed that the existence of partially susceptible individuals allows for the emerging virus to bypass resistance alleles that the virus has never encountered. Second, the concept of resistance genes may only be valid for a well-defined viral genotype but not for polymorphic viral populations.  相似文献   

2.
Western populations of the Italian agile frog (Rana latastei) experience widespread genetic depletion. Based on population genetic theory, molecular models of immunity and previous empirical studies, population genetic depletion predicts increased susceptibility of populations to emergent pathogens. We experimentally compared susceptibility of R. latastei populations upon exposure to an emerging strain of Ranavirus, frog virus 3 (FV3), using six populations spanning the geographical range and range of population genetic diversity found in nature. Our findings confirm this prediction, suggesting that the loss of genetic diversity accompanying range expansion and population isolation is coincident with increased mortality risk from an emergent pathogen. Loss of heterozygosity and escape from selection imposed by immunologically cross‐reactive pathogens may potentially generate range‐wide variation in disease resistance.  相似文献   

3.
The incidence of Crohn's disease is increasing in many Asian countries, but considerable differences in genetic susceptibility have been reported between Western and Asian populations. This study aimed to fine‐map 23 previously reported Crohn's disease genes and identify their interactions in the Chinese population by Illumina‐based targeted capture sequencing. Our results showed that the genetic polymorphism A>G at rs144982232 in MST1 showed the most significant association (= 1.78 × 10?5; odds ratio = 4.87). JAK2 rs1159782 (T>C) was also strongly associated with Crohn's disease (= 2.34 × 10?4; odds ratio = 3.72). Gene‐gene interaction analysis revealed significant interactions between MST1 and other susceptibility genes, including NOD2, MUC19 and ATG16L1 in contributing to Crohn's disease risk. Main genetic associations and gene‐gene interactions were verified using ImmunoChip data set. In conclusion, a novel susceptibility locus in MST1 was identified. Our analysis suggests that MST1 might interact with key susceptibility genes involved in autophagy and bacterial recognition. These findings provide insight into the genetic architecture of Crohn's disease in Chinese and may partially explain the disparity of genetic signals in Crohn's disease susceptibility across different ethnic populations by highlighting the contribution of gene‐gene interactions.  相似文献   

4.
Genome-wide association study (GWAS) provides a powerful tool for investigating the genetic architecture of human polygenic diseases and is generally used to identify the genetic factors of disease susceptibility, clinical phenotypes, and treatment response. The differences in allele frequencies of single nucleotide polymorphisms (SNPs) distributed throughout the genome are analyzed with a microarray technique or other technologies that allow simultaneous genotyping at several tens of thousands to several millions of SNPs per sample. Owing to its power to find out highly reliable differences between patients and controls, GWAS became a common approach to identification of the genetic susceptibility factors in complex diseases of a polygenic nature. Using multiple sclerosis (MS) as a prototype complex disease, the review considers the main achievements and challenges of using GWAS to identify the genes involved in the disease and, therefore, to better understand the pathogenetic molecular mechanisms and genetic risk factors.  相似文献   

5.

Background

Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year.

Methodology/Principal Findings

Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon''s index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation.

Significance

Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly.  相似文献   

6.
Multiple sclerosis (MS) is a debilitating chronic inflammatory disease of the nervous system that affects approximately 2.3 million individuals worldwide, with higher prevalence in females, and a strong genetic component. While over 200 MS susceptibility loci have been identified in GWAS, the underlying mechanisms whereby they contribute to disease susceptibility remains ill-defined. Forward genetics approaches using conventional laboratory mouse strains are useful in identifying and functionally dissecting genes controlling disease-relevant phenotypes, but are hindered by the limited genetic diversity represented in such strains. To address this, we have combined the powerful chromosome substitution (consomic) strain approach with the genetic diversity of a wild-derived inbred mouse strain. Using experimental allergic encephalomyelitis (EAE), a mouse model of MS, we evaluated genetic control of disease course among a panel of 26 consomic strains of mice inheriting chromosomes from the wild-derived PWD strain on the C57BL/6J background, which models the genetic diversity seen in human populations. Nineteen linkages on 18 chromosomes were found to harbor loci controlling EAE. Of these 19 linkages, six were male-specific, four were female-specific, and nine were non-sex-specific, consistent with a differential genetic control of disease course between males and females. An MS-GWAS candidate-driven bioinformatic analysis using orthologous genes linked to EAE course identified sex-specific and non-sex-specific gene networks underlying disease pathogenesis. An analysis of sex hormone regulation of genes within these networks identified several key molecules, prominently including the MAP kinase family, known hormone-dependent regulators of sex differences in EAE course. Importantly, our results provide the framework by which consomic mouse strains with overall genome-wide genetic diversity, approximating that seen in humans, can be used as a rapid and powerful tool for modeling the genetic architecture of MS. Moreover, our data represent the first step towards mechanistic dissection of genetic control of sexual dimorphism in CNS autoimmunity.  相似文献   

7.
The fish pathogen Flavobacterium psychrophilum infects farmed salmonids worldwide, and application of bacteriophages has been suggested for controlling disease outbreaks in aquaculture. Successful application of phages requires detailed knowledge about the variability in phage susceptibility of the host communities. In this study, we analysed the genetic diversity of F. psychrophilum hosts and phages from the Baltic Sea area to identify genetic determinants of phage-host interaction patterns. A host range analysis of 103 phages tested against 177 F. psychrophilum strains (18 231 phage–host interactions) identified nine phage clusters, infecting from 10% to 91% of the strain collection. The core genome-based comparison of 35 F. psychrophilum isolates revealed an extremely low overall genomic diversity (>99.5% similarity). However, a small subset of 16 ORFs, including genes involved in the type IX secretion system (T9SS), gliding motility and hypothetical cell-surface related proteins, exhibited a highly elevated genetic diversity. These specific genetic variations were linked to variability in phage infection patterns obtained from experimental studies, indicating that these genes are key determinants of phage susceptibility. These findings provide novel insights on the molecular mechanisms determining phage susceptibility in F. psychrophilum and emphasizes the importance of phages as drivers of core genomic diversity in this pathogen.  相似文献   

8.
Thanks to major progress in genetics, a great number of disease susceptibility genes have been characterized. However, the concept of genetic defect is challenged by the elusive boundary between genetic diseases and allelic polymorphism which represents a major adaptative response to the diversity of environmental pressures. The detection of disease susceptibility alleles should be performed only if appropriate prevention can be initiated. Otherwise predictive medicine together with insufficient protection of the person's rights against the use of genetic markers may prove to be socially and psychologically detrimental. Ethical and social issues of predictive medicine definitely deserve to be fully debated.  相似文献   

9.
Both sequence variation and copy-number variation (CNV) of the genes encoding receptors for immunoglobulin G (Fcγ receptors) have been genetically and functionally associated with a number of autoimmune diseases. However, the molecular nature and evolutionary context of this variation is unknown. Here, we describe the structure of the CNV, estimate its mutation rate and diversity, and place it in the context of the known functional alloantigen variation of these genes. Deletion of Fcγ receptor IIIB, associated with systemic lupus erythematosus, is a result of independent nonallelic homologous recombination events with a frequency of approximately 0.1%. We also show that pathogen diversity, in particular helminth diversity, has played a critical role in shaping the functional variation at these genes both between mammalian species and between human populations. Positively selected amino acids are involved in the interaction with IgG and include some amino acids that are known polymorphic alloantigens in humans. This supports a genetic contribution to the hygiene hypothesis, which states that past evolution in the context of helminth diversity has left humans with an array of susceptibility alleles for autoimmune disease in the context of a helminth-free environment. This approach shows the link between pathogens and autoimmune disease at the genetic level and provides a strategy for interrogating the genetic variation underlying autoimmune-disease risk and infectious-disease susceptibility.  相似文献   

10.
Sjögren's syndrome is an autoimmune disease with a complex etiology depending on hereditary and environmental factors. The disease is characterized by lymphocytic infiltration and inflammation in the salivary and lacrimal glands, leading to oral and ocular dryness. To understand the genetic susceptibility in Sjögren's syndrome, studies of disease phenotypes have been performed in the non-obese diabetic (NOD) mouse. By the identification of genetic regions controlling development of autoimmune exocrinopathy in the NOD mouse and by reducing one of these regions considerably, Nguyen et al. in a recent issue of Arthritis Research and Therapy propose candidate genes for development of Sjögren's syndrome.  相似文献   

11.
12.
Genetic determinants of common human diseases are still poorly understood. Due to large investments, many small successes have been made and the research field is rapidly expanding. However, genetic susceptibility variants showing repeatable associations with common diseases are usually of small effect. They are therefore unlikely to individually explain substantial share of disease burden in any community or provide new insights into disease pathogenesis that could lead to development of new drugs effective in considerable portion of the disease cases in a population. Genetic architecture of common diseases is beginning to reveal an incredible diversity of potential genetic causes that act through somewhat limited number of mechanisms with important contribution of environmental interactions. In light of these findings, we present current understanding of genetic architecture of a spectrum of human diseases. We address the encountered problems in susceptibility gene identification, review the success of leading gene identification strategies and discuss current prospects for translating genomic advances into measurable public health benefits.  相似文献   

13.
R Y Shirk  J L Hamrick  C Zhang  S Qiang 《Heredity》2014,112(5):497-507
Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species'' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects'') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations.  相似文献   

14.
Defining genetic diversity in the wake of the release of several Mycobacterium avium subsp. paratuberculosis (MAP) genome sequences has become a major emphasis in the molecular biology and epidemiology of Johne's disease research. These data can now be used to define the extent of strain diversity on the farm. However, to perform these important tasks, researchers must have a way to distinguish the many MAP isolates/strains that are present in the environment or host to enable tracking over time. Recent studies have described genetic diversity of the Mycobacterium avium complex (MAC), of which MAP is a member, through pulsed‐field gel electrophoresis, single sequence repeats, variable‐number tandem repeats, genome rearrangements, single nucleotide polymorphisms and genomewide comparisons to identify insertions and deletions. Combinations of these methods can now provide discrimination sufficient for dependable strain tracking. These molecular epidemiology techniques are being applied to understand transmission of Johne's disease within dairy cattle herds as well as identify which strains predominate in wildlife.  相似文献   

15.

Background  

Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer), to analyze pooled DNA data.  相似文献   

16.
Understanding intraspecific relationships between genetic and functional diversity is a major goal in the field of evolutionary biology and is important for conserving biodiversity. Linking intraspecific molecular patterns of plants to ecological pressures and trait variation remains difficult due to environment‐driven plasticity. Next‐generation sequencing, untargeted liquid chromatography–mass spectrometry (LC‐MS) profiling, and interdisciplinary approaches integrating population genomics, metabolomics, and community ecology permit novel strategies to tackle this problem. We analyzed six natural populations of the disease‐threatened Cornus florida L. from distinct ecological regions using genotype‐by‐sequencing markers and LC‐MS‐based untargeted metabolite profiling. We tested the hypothesis that higher genetic diversity in C. florida yielded higher chemical diversity and less disease susceptibility (screening hypothesis), and we also determined whether genetically similar subpopulations were similar in chemical composition. Most importantly, we identified metabolites that were associated with candidate loci or were predictive biomarkers of healthy or diseased plants after controlling for environment. Subpopulation clustering patterns based on genetic or chemical distances were largely congruent. While differences in genetic diversity were small among subpopulations, we did observe notable similarities in patterns between subpopulation averages of rarefied‐allelic and chemical richness. More specifically, we found that the most abundant compound of a correlated group of putative terpenoid glycosides and derivatives was correlated with tree health when considering chemodiversity. Random forest biomarker and genomewide association tests suggested that this putative iridoid glucoside and other closely associated chemical features were correlated to SNPs under selection.  相似文献   

17.
In the 1970s and 1980s, analysis of recombinant inbred, congenic and recombinant haplotype mouse strains permitted us to effectively ''scan'' the murine genome for genes controlling resistance and susceptibility to leishmanial infections. Five major regions of the genome were implicated in the control of infections caused by different Leishmania species which, because they show conserved synteny with regions of the human genome, immediately provides candidate gene regions for human disease susceptibility genes. A common intramacrophage niche for leishmanial and mycobacterial pathogens, and a similar spectrum of immune response and disease phenotypes, also led to the prediction that the same genes/candidate gene regions might be responsible for genetic susceptibility to mycobacterial infections such as leprosy and tuberculosis. Indeed, one of the murine genes (Nramp1) was identified for its role in controlling a range of intramacrophage pathogens including leishmania, salmonella and mycobacterium infections. In recent studies, multicase family data on visceral leishmaniasis and the mycobacterial diseases, tuberculosis and leprosy, have been collected from north-eastern Brazil and analysed to determine the role of these candidate genes/regions in determining disease susceptibility. Complex segregation analysis provides evidence for one or two major genes controlling susceptibility to tuberculosis in this population. Family-based linkage analyses (combined segregation and linkage analysis; sib-pair analysis), which have the power to detect linkage between marker loci in candidate gene regions and the putative disease susceptibility genes over 10-20 centimorgans, and transmission disequilibrium testing, which detects allelic associations over 1 centimorgan (ca. 1 megabase), have been used to examine the role of four regions in determining disease susceptibility and/or immune response phenotype. Our results demonstrate: (i) the major histocompatibility complex (MHC: H-2 in mouse, HLA in man: mouse chromosome 17/human 6p; candidates class II and class III including TNF alpha/beta genes) shows both linkage to, and allelic association with, leprosy per se, but is only weakly associated with visceral leishmaniasis and shows neither linkage to nor allelic association with tuberculosis; (ii) no evidence for linkage between NRAMP1, the positionally cloned candidate for the murine macrophage resistance gene Ity/Lsh/Bcg (mouse chromosome 1/human 2q35), and susceptibility to tuberculosis or visceral leishmaniasis could be demonstrated in this Brazilian population; (iii) the region of human chromosome 17q (candidates NOS2A, SCYA2-5) homologous with distal mouse chromosome 11, originally identified as carrying the Scl1 gene controlling healing versus nonhealing responses to Leishmania major, is linked to tuberculosis susceptibility; and (iv) the ''T helper 2'' cytokine gene cluster (proximal murine chromosome 11/human 5q; candidates IL4, IL5, IL9, IRF1, CD14) controlling later phases of murine L. major infection, is not linked to human disease susceptibility for any of the three infections, but shows linkage to and highly significant allelic association with ability to mount an immune response to mycobacterial antigens. These studies demonstrate that the ''mouse-to-man'' strategy, refined by our knowledge of the human immune response to infection, can lead to the identification of important candidate gene regions in man.  相似文献   

18.
The Tasmanian devil (Sarcophilus harrisii) was widespread in Australia during the Late Pleistocene but is now endemic to the island of Tasmania. Low genetic diversity combined with the spread of devil facial tumour disease have raised concerns for the species’ long-term survival. Here, we investigate the origin of low genetic diversity by inferring the species'' demographic history using temporal sampling with summary statistics, full-likelihood and approximate Bayesian computation methods. Our results show extensive population declines across Tasmania correlating with environmental changes around the last glacial maximum and following unstable climate related to increased ‘El Niño–Southern Oscillation’ activity.  相似文献   

19.
Allelic richness (number of alleles) is a measure of genetic diversity indicative of a population''s long-term potential for adaptability and persistence. It is used less commonly than heterozygosity as a genetic diversity measure, partially because it is more mathematically difficult to take into account the stochastic process of genetic drift for allelic richness. This paper presents a stochastic model for the allelic richness of a newly founded population experiencing genetic drift and gene flow. The model follows the dynamics of alleles lost during the founder event and simulates the effect of gene flow on maintenance and recovery of allelic richness. The probability of an allele''s presence in the population was identified as the relevant statistical property for a meaningful interpretation of allelic richness. A method is discussed that combines the probability of allele presence with a population''s allele frequency spectrum to provide predictions for allele recovery. The model''s analysis provides insights into the dynamics of allelic richness following a founder event, taking into account gene flow and the allele frequency spectrum. Furthermore, the model indicates that the “One Migrant per Generation” rule, a commonly used conservation guideline related to heterozygosity, may be inadequate for addressing preservation of diversity at the allelic level. This highlights the importance of distinguishing between heterozygosity and allelic richness as measures of genetic diversity, since focusing merely on the preservation of heterozygosity might not be enough to adequately preserve allelic richness, which is crucial for species persistence and evolution.  相似文献   

20.
Behçet's disease is characterized by recurrent aphthous stomatitis, uveitis, genital ulcers, and skin lesions. The role of the HLA-B*51 gene has been confirmed in recent years, although its contribution to the overall genetic susceptibility to Behçet's disease was estimated to be only 19%. The production of a variety of cytokines by T cells activated with multiple antigens has been shown to play a pivotal role in the activation of neutrophils. As regards the treatment, anti-tumor necrosis factor alpha therapy has been shown to be effective for mucocutaneous symptoms as well as for sight-threatening panuveitis, although a randomized, controlled trial is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号