首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells from malaria-infected mice are fully functional APC   总被引:11,自引:0,他引:11  
Malaria infection has long been associated with diminished T cell responses in vitro and more recently in experimental studies in vivo. Suppression of T cell-proliferative responses during malaria has been attributed to macrophages in a variety of murine and human systems. More recently, however, attention has been directed at the role of dendritic cells in this phenomenon, with several studies suggesting that maturation of dendritic cells is inhibited in vitro by the presence of malaria-infected E. In the studies reported here, we have examined the function of dendritic cells taken directly from infected mice. We found that they express high levels of costimulatory proteins and class II MHC, can activate naive T cells to produce IL-2 as efficiently as dendritic cells from uninfected mice, and support high levels of IFN-gamma production by naive T cells through an IL-12-dependent mechanism. Dendritic cells from infected mice also support higher levels of TNF-alpha production by naive T cells. These same dendritic cells present parasite Ag to a malaria-specific T cell hybridoma, a finding that demonstrates that dendritic cells participate in the generation of Ag-specific immunity during infection. Our findings challenge the contention that dendritic cell function is inhibited by malaria infection.  相似文献   

2.
In this study, we demonstrate that genetically modified bone marrow-derived dendritic cells (DC) and exosomes derived from the DC, expressing either secreted IL-4 or membrane-bound IL-4, can reduce the severity and the incidence of established collagen-induced arthritis and inhibit inflammation of delayed-type hypersensitivity (DTH) in mice. The ability of the DC and DC-derived exosomes to suppress the DTH response was MHC class II and, in part, Fas ligand/Fas dependent. The DC-derived exosomes were internalized by CD11c(+) DC in the dermis at the site of injection and in the draining lymph node as well as by CD11c(+) DC and F4/80(+) macrophages in the spleen. Moreover, adoptive transfer of CD11c(+) or CD3(+) splenic cells from mice treated with exosomes showed significant reduction of footpad swelling in the DTH model. These results demonstrate that administration of DC/IL-4 or exosomes derived from DC/IL-4 are able to modulate the activity of APC and T cells in vivo through a MHC class II and partly Fas ligand/Fas-dependent mechanism, resulting in effective treatment of established collagen-induced arthritis and suppression of the DTH inflammatory response. Thus, APC-derived exosomes could be used therapeutically for the treatment of autoimmune disease and inflammatory disorders.  相似文献   

3.
Herpesviruses utilize many strategies for weakening the host immune response. For CMV, this includes avoidance of NK clearance and inhibition of MHC class I and class II presentation pathways. In this study, we report that mouse CMV (MCMV) specifically causes a premature and transient activation of host IL-10 very early in the course of infection, resulting in a dramatic and selective reduction in MHC class II surface expression. The expression of IL-10 is normally late in the immune response to a pathogen, serving to dampen the response by suppression of the production of inflammatory cytokines. In infection of macrophages, we show that MCMV induces the production of IL-10, leading to an early and selective reduction in the expression of MHC class II on the surface of the cells. Inhibition of MHC class II expression was not observed in the presence of neutralizing Abs to IL-10 or in macrophages from IL-10-deficient mice. Moreover, MCMV-infected IL-10-deficient mice developed an early and significantly more robust macrophage MHC class II induction than normal mice. Altogether, our results demonstrate that viral induction of an IL-10 autocrine pathway plays an essential early role in selectively reducing MHC class II expression on the surface of APC prior to stimulation by IFN-gamma.  相似文献   

4.
5.
We have studied the effects of IL-4 (B cell stimulatory factor 1) on the expression of MHC gene products in normal bone marrow-derived macrophages, peritoneal macrophages, and the myelomonocytic cell line WEHI-3. Using both IL-4-containing T cell supernatant and rIL-4, we have observed significant induction of both class I and class II MHC surface expression (about 1.5- to 4-fold increase) in 2-, 3-, and 4-day cultures of bone marrow-derived macrophages. This induction was also apparent at the mRNA level as assessed by Northern blot analysis using A beta, E alpha, and class I probes. Kinetic analysis revealed that induction of class II mRNA by IL-4 was slower than induction by IFN-gamma, requiring 48 h before a significant increase was noted. The magnitude of MHC induction by IL-4 was not as great as that seen with IFN-gamma, which was found to increase surface expression of MHC antigens two- to eightfold. IL-4 also differs from IFN-gamma in the repertoire of macrophages responsive to it. IL-4 was unable to induce class I or class II expression in either thioglycolate-elicited peritoneal macrophages or WEHI-3 cells whereas IFN-gamma induced MHC antigen expression on both cell types under the same conditions. These data demonstrate that IL-4 is capable of inducing both class I and class II MHC gene products in some, but not all, macrophages.  相似文献   

6.
The Ag-specific CD4(+) regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4(+) Tr cells is unclear. In this study, we generated IL-10- and IFN-gamma-expressing type 1 CD4(+) Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4(+) T cells with IL-10-expressing adenovirus (AdV(IL-10))-transfected and OVA-pulsed dendritic cells (DC(OVA/IL-10)). We demonstrated that both in vitro and in vivo DC(OVA/IL-10)-stimulated CD4(+) Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4(+) Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8(+) T cells, leading to an enhanced suppression of DC(OVA)-induced CD8(+) T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by approximately 700% relative to analogous CD4(+) Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4(+)25(+) Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8(+) T cell responses and antitumor immunity after uptake of DC(OVA)-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4(+) Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4(+) Tr cell suppression.  相似文献   

7.
Allergen-specific immunotherapy using peptides is an efficient treatment for allergic diseases. Recent studies suggest that the induction of CD4+ regulatory T (Treg) cells might be associated with the suppression of allergic responses in patients after allergen-specific immunotherapy. Our aim was to identify MHC class II promiscuous T cell epitopes for the birch pollen allergen Bet v 1 capable of stimulating Treg cells with the purpose of inhibiting allergic responses. Ag-reactive CD4+ T cell clones were generated from patients with birch pollen allergy and healthy volunteers by in vitro vaccination of PBMC using Bet v 1 synthetic peptides. Several CD4+ T cell clones were induced by using 2 synthetic peptides (Bet v 1(141-156) and Bet v 1(51-68)). Peptide-reactive CD4+ T cells recognized recombinant Bet v 1 protein, indicating that these peptides are produced by the MHC class II Ag processing pathway. Peptide Bet v 1(141-156) appears to be a highly MHC promiscuous epitope since T cell responses restricted by numerous MHC class II molecules (DR4, DR9, DR11, DR15, and DR53) were observed. Two of these clones functioned as typical Treg cells (expressed CD25, GITR, and Foxp3 and suppressed the proliferation and IL-2 secretion of other CD4+ T cells). Notably, the suppressive activity of these Treg cells required cell-cell contact and was not mediated through soluble IL-10 or TGF-beta. The identified promiscuous MHC class II epitope capable of inducing suppressive Treg responses may have important implication for the development of peptide-based Ag-specific immunotherapy to birch pollen allergy.  相似文献   

8.
9.

Background

Type II activation of macrophages is known to support Th2 responses development; however, the role of Th2 cytokines (esp. IL-4) on type II activation is unknown. To assess whether the central Th2 cytokine IL-4 can alter type II activation of macrophages, we compared the ability of bone marrow-derived macrophages from wild type (WT) and IL-4Rα-deficient mice to be classically or type II-activated in vitro.

Results

We found that although both WT and IL-4Rα-deficient macrophages could be classically activated by LPS or type II activated by immune complexes plus LPS, IL-4Rα-deficient macrophages consistently produced much higher levels of IL-12p40 and IL-10 than WT macrophages. Additionally, we discovered that type II macrophages from both strains were capable of producing IL-4; however, this IL-4 was not responsible for the reduced IL-12p40 and IL-10 levels produced by WT mice. Instead, we found that derivation culture conditions (GM-CSF plus IL-3 versus M-CSF) could explain the different responses of BALB/c and IL-4Rα−/− macrophages, and these cytokines shaped the ensuing macrophage such that GM-CSF plus IL-3 promoted more IL-12 and IL-4 while M-CSF led to higher IL-10 production. Finally, we found that enhanced IL-4 production is characteristic of the type II activation state as other type II-activating products showed similar results.

Conclusions

Taken together, these results implicate type II activated macrophages as an important innate immune source of IL-4 that may play an important role in shaping adaptive immune responses.  相似文献   

10.
It has been known for decades that circulating human CD4 cells can express functional MHC class II molecules that induce T cell nonresponsiveness with Ag presentation. Because there is significant expression of MHC class II (MHC-II) determinants (DR) on a subpopulation CD4+ CD25(high) regulatory T cells (Treg), we examined the function of CD4 cells expressing MHC-DR. We demonstrate that MHC-II expression on human CD4+ CD25(high) T cells identifies a functionally distinct population of Treg that induces early contact-dependent suppression that is associated with high Foxp3 expression. In striking contrast, MHC-II- CD4+ CD25(high) Treg induce early IL-4 and IL-10 secretion and a late Foxp3-associated contact-dependent suppression. The DR expressing CD25(high) Treg express higher levels of Foxp3 message and protein, compared with the DR- CD25(high) Treg population. Direct single-cell cloning of CD4+ CD25(high) Treg revealed that, regardless of initial DR expression, ex vivo expression of CD25(high), and not DR, predicted which clones would exhibit contact-dependent suppression, high levels of Foxp3 message, and an increased propensity to become constitutive for DR expression. Thus, the direct ex vivo expression of MHC-II in the context of CD25(high) identifies a mature, functionally distinct regulatory T cell population involved in contact-dependent in vitro suppression.  相似文献   

11.
Available evidence suggests that immune cells from neonates born to mothers with placental Plasmodium falciparum (Pf) infection are sensitized to parasite Ag in utero but have reduced ability to generate protective Th1 responses. In this study, we detected Pf Ag-specific IFN-gamma(+) T cells in cord blood from human neonates whose mothers had received treatment for malaria or who had active placental Pf infection at delivery, with responses being significantly reduced in the latter group. Active placental malaria at delivery was also associated with reduced expression of monocyte MHC class I and II in vivo and following short term in vitro coculture with Pf Ag compared with levels seen in neonates whose mothers had received treatment during pregnancy. Given that APC activation and Th1 responses are driven in part by IFN-gamma and down-regulated by IL-10, we examined the role of these cytokines in modulating the Pf Ag-specific immune responses in cord blood samples. Exogenous recombinant human IFN-gamma and neutralizing anti-human IL-10 enhanced T cell IFN-gamma production, whereas recombinant human IFN-gamma also restored MHC class I and II expression on monocytes from cord blood mononuclear cells cocultured with Pf Ag. Accordingly, active placental malaria at delivery was associated with increased frequencies of Pf Ag-specific IL-10(+)CD4(+) T cells in cord blood mononuclear cell cultures from these neonates. Generation and maintenance of IL-10(+) T cells in utero may thus contribute to suppression of APC function and Pf Ag-induced Th1 responses in newborns born to mothers with placental malaria at delivery, which may increase susceptibility to infection later in life.  相似文献   

12.
We have studied the human CD4 T cell response to a functionally conserved domain of Plasmodium falciparum erythrocyte membrane protein-1, cysteine interdomain region-1alpha (CIDR-1alpha). Responses to CIDR-1alpha were striking in that both exposed and nonexposed donors responded. The IFN-gamma response to CIDR-1alpha in the nonexposed donors was partially independent of TCR engagement of MHC class II and peptide. Contrastingly, CD4 T cell and IFN-gamma responses in malaria-exposed donors were MHC class II restricted, suggesting that the CD4 T cell response to CIDR-1alpha in malaria semi-immune adults also has a TCR-mediated component, which may represent a memory response. Dendritic cells isolated from human peripheral blood were activated by CIDR-1alpha to produce IL-12, IL-10, and IL-18. IL-12 was detectable only between 6 and 12 h of culture, whereas the IL-10 continued to increase throughout the 24-h time course. These data strengthen previous observations that P. falciparum interacts directly with human dendritic cells, and suggests that the interaction between CIDR-1alpha and the host cell may be responsible for regulation of the CD4 T cell and cytokine responses to P. falciparum-infected erythrocytes reported previously.  相似文献   

13.
Major histocompatibility complex (MHC) class II antigen expression has been implicated in the pathogenesis of autoimmune type 1 diabetes. In this study we examined the role of various cytoldnes that may induce MHC class II surface antigen expression, using the rat insulinoma line RIN-5AH as a pertinent model system. As in another study, the ability of IFN-gamma to amplify MHC class II antigen expression 4-fold is demonstrated. At the same time we noted a 5-fold increase of these histocompatibility antigens by IL-6. Signal transduction analysis reveals that IL-6-induced MHC class II expression is specifically mediated by the G-protein system (activation of p21(ras) by IL-6) since mevalonic acid lactone (a Gprotein inhibitor) abolishes the action of IL-6. In contrast, IFN-gamma, which does not activate p21(ras), is not inhibited by protein kinase C (PKC) inhibitors but by those of the G-protein pathway. This finding raises the possibility that IFN-gamma induces RIN cells to secrete IL-6 (as shown previously, as well as in this paper) which, in turn, increases class II antigen expression via the G-protein pathway. This action may be unique to IL-6 or in synergy with IFN-gamma. Other cytokines such as IL-1alpha and beta, and TNF-alpha induce a smaller increase in MHC class II antigens on RIN cells, and appear to activate both the G-protein and the PKC signal transduction pathways to varying degrees. Therefore, injury of pancreatic beta-cells and possible induction of autoimmune type 1 diabetes via various cytokines may be caused by IL-6 or IFN-gamma, or by their ability to induce MHC class II antigen upregulation.  相似文献   

14.
IL-10 is vastly studied for its anti-inflammatory properties on most immune cells. However, it has been reported that IL-10 activates B cells, up-regulates their MHC class II molecules and prevents apoptosis. As MARCH1 was shown to be responsible for the intracellular sequestration of MHC class II molecules in dendritic cells and monocytes in response to IL-10, we set out to clarify the role of this ubiquitin ligase in B cells. Here, we demonstrate in mice that splenic follicular B cells represent the major cell population that up-regulate MHC II molecules in the presence of IL-10. Activation of these cells through TLR4, CD40 or the IL-10 receptor caused the down-regulation of MARCH1 mRNA. Accordingly, B cells from MARCH1-deficient mice do not up-regulate I-A(b) in response to IL-10. In all, our results demonstrate that IL-10 can have opposite effects on MARCH1 regulation in different cell types.  相似文献   

15.
Females tend to have stronger Th1-mediated immune responses and are more prone to develop autoimmune diseases, including multiple sclerosis. Macrophages are major effector cells capable of mediating or modulating immune responses in experimental autoimmune encephalomyelitis (EAE). IL-13 and estrogen have opposing roles on macrophages (the former enhancing and the latter inhibiting) in terms of MHC class II (MHC II) up-regulation and, thus, these factors might influence susceptibility to EAE differently in females vs males. In accordance with this hypothesis, females lacking IL-13 displayed lower incidence and milder EAE disease severity than males after immunization with myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide/CFA/pertussis toxin. Female IL-13 knockout (KO) mice with EAE consistently had reduced infiltration of CD11b(+) macrophages in the CNS along with significantly reduced expression of MHC II on these cells. Impaired MHC II expression was further corroborated upon LPS stimulation of female but not male bone marrow-derived CD11b(+) macrophages from IL-13KO mice, with restored expression after IL-13 pretreatment of female but not male macrophages. APCs from IL-13KO females induced less proliferation by MOG-35-55-reactive T cells, and splenocytes from MOG peptide-immunized females had lower expression of IL-12, IFN-gamma, MIP-2, and IFN-gamma-inducible protein 10 than males. In contrast, these splenocytes had higher expression of anti-inflammatory factors, IL-10, TGF-beta1, and FoxP3, a cytokine pattern typical of regulatory type II monocytes. These data suggest that the difference in EAE susceptibility in females is strongly influenced by gender-specific proinflammatory effects of IL-13, mediated in part through up-regulation of Th1-inducing cytokines and MHC II on CD11b(+) macrophages.  相似文献   

16.
17.
In this paper, we address the question whether CD4 and MHC class II expression are necessary for the development of the T helper lineage during thymocyte maturation and for activation-induced Th2 responses. To bypass the CD4-MHC class II interaction requirements for positive selection and activation, we used mice that are doubly transgenic for CD8 and for the MHC class I-restricted TCR F5. This transgene combination leads to MHC class I-dependent maturation of CD4 lineage cells. Upon activation, these CD4 lineage T cells secrete IL-4 and give help to B cells but show no cytotoxic activity. Remarkably, neither MHC class II nor CD4 expression are necessary for the generation and helper functions of these cells. This suggests that under normal conditions, coreceptor-MHC interactions are necessary to ensure the canonical combinations of coreceptor and function in developing thymocytes, but that they do not determine functional commitment. Our results also imply that expression of the CD4 gene does not influence, but is merely associated with the decision to establish the T helper program. In addition, we show that activation through TCR-MHC class I interactions can induce Th2 responses independently of CD4 and MHC class II expression.  相似文献   

18.
We have isolated a Thy-1+, CD3+, CD4+ T-cell line from the spleen of a 12-week-old nu/nu (nude) BALB/c mouse. The cell line is clonal, and it expresses an alpha beta T-cell antigen receptor. Upon activation, these cells secrete IL-2 but not IL-4, putting them in the Th1 category. The cells can be triggered to proliferate and secrete lymphokines in the presence of irradiated syngeneic or allogeneic splenic feeder cells that express a variety of MHC haplotypes. This response is MHC class II-specific, because it can be blocked by either anti-Ia or anti-CD4 antibodies. From the response pattern of this T-cell line, we conclude that it recognizes a common determinant on class II MHC antigens. This nude mouse T-lymphocyte presumably has not undergone thymic selection. Therefore its unique specificity may reflect both the bias of T-cell antigen receptor genes for encoding receptors that recognize MHC molecules and the requirement for functional thymic epithelial cells for the efficient education of a self-MHC-restricted repertoire.  相似文献   

19.
Liu L  Li L  Min J  Wang J  Wu H  Zeng Y  Chen S  Chu Z 《Cellular immunology》2012,277(1-2):66-73
Dendritic cells (DCs) are specialized antigen-presenting cells that are uniquely capable of either inducing immune responses or maintaining a state of self-tolerance, depending on their stage of maturation. In the present study, we describe a way to interfere with DCs maturation. The compound butyrate can affect the differentiation of DCs generated from human monocytes and can inhibit T cell proliferation. We demonstrate that butyrate substantially down-regulates the expression of CD80, CD83, and MHC class II molecules; increases endocytic capability; reduces allostimulatory abilities; promote interleukin-10 (IL-10) production; and inhibits interleukin-12 (IL-12) and interferon-γ (IFN-γ) production. These results demonstrate a specific immune suppression property of butyrate and supports further investigation for butyrate as a new immunotherapeutic agent.  相似文献   

20.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号