首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For the foreseeable future a majority of the population, and almost all the mal- and under-nourished, will continue to be found in the tropics and subtropics. Food security in these parts of the world will have to be met largely from local resources. The productivity of the land is to a large extent determined by the fertlity of the soil, which in turn is mostly determined by its organic matter content and stored nutrients. Soil organic matter is readily lost when organic matter inputs are reduced upon cultivation and more so upon intensification. The concomitant loss of topsoil and possible exposure of subsoil acidity may cause further soil degradation.<br>Plant nutrients to replenish what is yearly taken from the soil to meet the demands for food and fibre amount to 230 million tonnes (Mt). Current fertilizer consumption stands at about 130 Mt of N, P2O5,and K2O, supplemented by an estimated 90 Mt of N from biological nitrogen fixation worldwide. Although 80 per cent of the population lives in the developing world, only half the world''s fertilizer is consumed there. Yet, as much as 50% of the increase in agricultural productivity in the developing world is due to the adoption of fertilizers. World population growth will cause a doubling in these nutrients requirements for the developing world by 2020, which, in the likely case of inadequate production, will need to be met from soil reserves. Because expansion of the cultivable land area is reaching its limits, the reliance on nutrient inputs and their efficient use is bound to grow.<br>With current urban expansion, nutrients in harvested products are increasingly lost from the rural environment as a whole. Estimates of soil nutrient depletion rates for sub-Saharan Africa (SSA) are alarmingly high. The situation may be more favourable in Latin America and Asia where fertilizer inputs are tenfold those of SSA. Closing the nutrient cycle at a community level in rural areas may be tedious; on an inter-regional level it is associated with considerable costs of collection, detoxification and transportation to the farms. Yet, at the rate at which some of the non-renewable resources such as phosphorus and potassium are being exploited, recycling of these nutrients will soon be required. <br>  相似文献   

2.
Biomass production of annual crops is often directly proportional to the amounts of radiation intercepted, water transpired and nutrients taken up. In many places the amount of rainfall during the period of rapid crop growth is less than the potential rate of evaporation, so that depletion of stored soil water is commonplace. The rate of mineralization of nitrogen (N) from organic matter and the processes of nutrient loss are closely related to the availability of soil water. Results from Kenya indicate the rapid changes in nitrate availability following rain.<br>Nutrient supply has a large effect on the quantity of radiation intercepted and hence, biomass production. There is considerable scope for encouraging canopy expansion to conserve water by reducing evaporation from the soil surface in environments where it is frequently rewetted, and where the unsaturated hydraulic conductivity of the soil is sufficient to supply water at the energy limited rate (e.g. northern Syria). In regions with high evaporative demand and coarse-textured soils (e.g. Niger), transpiration may be increased by management techniques that reduce drainage.<br>Increases in atmospheric [CO2] are likely to have only a small impact on crop yields when allowance is made for the interacting effects of temperature, and water and nutrient supply. <br>  相似文献   

3.
Effects of soil erosion on crop productivity   总被引:2,自引:0,他引:2  
Soil erosion and the effects of soil erosion on crop productivity have become emotional issues and have attracted the attention of agriculturists, environmentalists, and the public in general. In spite of heavy investments in research and development, the global rates of accelerated erosion are now presumbly higher than ever before. However, the data from available records obtained by diverse methods are uncomparable, unreliable, confusing, and often vary by several orders of magnitude. Reports of erosion‐caused alterations in crop productivity and soil properties are also contradictory and subjective. In addition to the lack of standardized methodology in evaluating soil erosion and its effects on crops, controversial interpretations are attributed to differences in soil profile characteristics, nutrient status, crops grown, and prevailing climatic conditions. Although erosion is generally associated wtih yield reductions, there are examples of where soil erosion has had no effect or has had a positive effect on crop production. Accelerated erosion affects productivity both directly and indirectly. Directly, the erosion‐induced reduction in crop yields is attributed to loss of rooting depth, degradation of soil structure, decrease in plant‐available water reserves, reduction in organic matter, and nutrient imbalance. Depending on soil properties and the degree of degradation, adverse effects of erosion on crop yields can be mostly compensated for by additional inputs of macronu‐trients (N, P, K) and macronutrients plus organic matter, by supplemental applications of some micronu‐trients, and by irrigation. For some soils, e.g., tropical soils, crop yields from severely eroded soils are significantly lower than those from uneroded lands and are often uneconomic in spite of additional inputs. Specific examples of yield alterations are given in relation to the loss of plant nutrients, soil water reserves, and alterations in soil properties. Criteria for soil‐loss tolerance are discussed, and productivity restoration of eroded soils is reviewed in relation to soil organic matter content and nutrient requirments. Research and development priorities are presented.  相似文献   

4.
The assessment of the soil resource of any region has two parts, namely, an inventory of the kinds of soil and their distribution, and knowledge of the way each kind can be used and its performance under a range of circumstances. Soil varies substantially and intricately over short distances in most parts of the world. Inventory by field survey and air-photo interpretation must be done at a local scale. Inventories may be combined so that an individual nation state or region of similar size can know what kinds of soil it has, how much and where they are, how much each can produce, how to manage each in perpetuity, and the risks of degradation in use. Local classifications, with classes defined simply and identifiably on aerial photographs, will serve for mapping, and in combination with classical statistics can provide sound estimates from stratified sampling and agronomic experimentation.<br>Sound assessment should also be at this local scale initially. This should combine fundamental understanding of the soil''s behaviour, strategic agronomic research on regional stations, and on-farm trials. The last are crucial for estimating productivity of the soil in practice.<br>Data from all sources can be stored, sorted and displayed by geographic information systems that now have abundant capacity. They should be indexed by soil class and other attributes, with clear distinction being made between assessments of productive potential and basic data. They should be publicly accessible, to ensure that data are readily available and never lost.<br>Estimates of the soil resource and its productivity for large regions, nation states, and the world can be compiled from local surveys by sampling through a ''bottom-up'' procedure. <br>  相似文献   

5.
Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, ''Cinderella'' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is evidence that demonstrates that there are conditions under which increasing tree planting is occurring on farms in the tropics through successful agroforestry as human population density increases. <br>  相似文献   

6.
The decline of soil organic matter (SOM) and its associated fertility is one of the most important constraints to enhanced crop productivity in sub-Saharan Africa. Integrated soil fertility management recognizes the potential benefits of the combined use of organic residue and mineral fertilizer inputs for improved crop yield and SOM build up. However, these benefits may be controlled by residue quality. We examined the short- to long-term C and N dynamics following application of different quality residues with and without N fertilizer in a series of experiments comprising different timescales of measurement in a Kenyan Humic Nitisol. The combined results of these studies indicate that residue quality and fertilizer additions alter short-term C and N mineralization. Combining low quality residue and fertilizer inputs immobilized a greater amount of fertilizer-N than high quality residue. Under field conditions, this reduction in available N induced by the combination of low quality residue and fertilizer reduced environmental N losses and created a positive interactive effect on crop N uptake. While input management manipulated short-term nutrient dynamics, it did not influence long-term SOM stabilization. The input of residue, regardless of quality, contributed to long-term soil fertility improvement. In conclusion, organic residue quality can be manipulated to optimize short-term nutrient dynamics while still conferring the same benefits to long-term SOM contents.  相似文献   

7.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

8.
Microbial communities in soils may change in accordance with distance, season, climate, soil texture and other environmental parameters. Microbial diversity patterns have been extensively surveyed in temperate regions, but few such studies attempted to address them with respect to spatial and temporal scales and their correlations to environmental factors, especially in arid ecosystems. In order to fill this gap on a regional scale, the molecular fingerprints and abundance of three taxonomic groups – Bacteria, α-Proteobacteria and Actinobacteria – were sampled from soils 0.5–100 km apart in arid, semi-arid, dry Mediterranean and shoreline Mediterranean regions in Israel. Additionally, on a local scale, the molecular fingerprints of three taxonomic groups – Bacteria, Archaea and Fungi – were sampled from soils 1 cm–500 m apart in the semi-arid region, in both summer and winter. Fingerprints of the Bacteria differentiated between all regions (P<0.02), while those of the α-Proteobacteria differentiated between some of the regions (0.01<P<0.09), and actinobacterial fingerprints were similar among all regions (P>0.05). Locally, fingerprints of archaea and fungi did not display distance-decay relationships (P>0.13), that is, the dissimilarity between communities did not increase with geographic distance. Neither was this phenomenon evident in bacterial samples in summer (P>0.24); in winter, however, differences between bacterial communities significantly increased as the geographic distances between them grew (P<0.01). Microbial community structures, as well as microbial abundance, were both significantly correlated to precipitation and soil characteristics: texture, organic matter and water content (R2>0.60, P<0.01). We conclude that on the whole, microbial biogeography in arid and semi-arid soils in Israel is determined more by specific environmental factors than geographic distances and spatial distribution patterns.  相似文献   

9.
The Malthusian prognosis has been undermined by an exponential increase in world food supply since 1960, even in the absence of any extension of the arable area. The requisite increases in yield of the cereal staples have come partly from agronomic intensification, especially of nitrogenous fertilizer use made possible by the dwarfing of wheat and rice, in turn made feasible by herbicide development. Cereal dwarfing also contributed to a marked rise in harvest index and yield potential.<br>Although there is still scope for some further improvement in harvest index and environmental adaptation, it is not apparent how a doubling of yield potential can be achieved unless crop photosynthesis can be substantially enhanced by genetic engineering. Empirical selection for yield has not enhanced photosynthetic capacity to date, but nitrogenous and other fertilizers have done so, and there is still scope for agronomic increases in yield and for new synergisms between agronomy and plant breeding. <br>  相似文献   

10.
The following paper investigates the economic determinants of land degradation in developing countries. The main trends examined are rural households'' decisions to degrade as opposed to conserve land resources, and the expansion of frontier agricultural activity that contributes to forest and marginal land conversion. These two phenomena appear often to be linked. In many developing areas, a poor rural household''s decision whether to undertake long-term investment in improving existing agricultural land must be weighed against the decision to abandon this land and migrate to environmentally fragile areas. Economic factors play a critical role in determining these relationships. Poverty, imperfect capital markets and insecure land tenure may reinforce the tendency towards short-term time horizons in production decisions, and may bias land use decisions against long-term land management strategies. In periods of commodity booms and land speculation, wealthier households generally take advantage of their superior political and market power to ensure initial access to better quality resources, in order to capture a larger share of the resource rents. Poorer households are confined either to marginal environmental areas where resource rents are limited, or only have access to resources once they are degraded and rents dissipated.<br>Overall trends in land degradation and deforestation are examined, followed by an overview of rural households'' resource management decisions with respect to land management, frontier agricultural expansion, and migration from existing agricultural land to frontiers. Finally, the discussion focuses on the scope for policy improvements to reduce economic constraints to effective land management. <br>  相似文献   

11.
Soil degradation in the savannah-derived agroecosystems of West Africa is often associated with rapid depletion of organic carbon stocks in soils of coarse texture. Field experiments were conducted over a period of more than 30 years at two sites in semiarid Togo to test the impact of agricultural management practices on soil C stocks and crop productivity. The resulting datasets were analysed using dynamic simulation models of varying complexity, to study the impact of crop rotation, fertiliser use and crop residue management on soil C dynamics. The models were then used to calculate the size of the annual C inputs necessary to restore C stocks to thresholds that would allow positive crop responses to fertilisers under continuous cultivation. Yields of all crops declined over the 30 years irrespective of crop rotation, fertiliser use or crop residue management. Both seed-cotton and cereal grain yields with fertiliser fluctuated around 1 t ha?1 after 20 years. Rotations that included early maturing sorghum varieties provided larger C inputs to the soil through residue biomass; around 2.5 t C ha?1?year?1. Soil C stocks, originally of 15 t ha?1 after woodland clearance, decreased by around 3 t ha?1 at both sites and for virtually all treatments, reaching lower equilibrium levels after 5–10 years of cultivation. Soil C dynamics were well described with a two-pool SOM model running on an annual time step, with parameter values of 0.25 for the fraction of resistant plant material (K1), 0.15–0.20 for the decomposition rate of labile soil C (K2) and 8–10 t C ha?1 for the fraction of stable C in the soil. Simulated addition of organic matter to the soil 30 years after woodland clearance indicated that additions of 3 t C ha?1?year?1 for 15–20 years would be necessary to build ‘threshold’ soil C stocks of around 13 t ha?1, compatible with positive crop response to fertiliser. The simulated soil C increases of 0.5 to 1.6% per year are comparable with results from long-term experiments in the region. However, the amounts of organic matter necessary to build these soil C stocks are not readily available to resource-poor farmers. These experimental results question the assumption that crop residue removal and lack of fertiliser input are responsible for soil C decline in these soils. Even when residues were incorporated and fertilisers used at high rates, crop C inputs were insufficient to compensate for C losses from these sandy soils under continuous cultivation.  相似文献   

12.
The major agricultural intensifications in the developed world over the last half century have produced a range of important environmental problems. These include pollution, damage to wildlife and landscape and other issues, both on- and off-site. These are largely being controlled by scientific investigation and Government regulation. As developing countries increase agricultural production over the next 30 years, this may also cause even more serious environmental damage.<br>The paper distinguishes between production-related on-site damage, and off-site and more extensive effects. Both may involve soil and water effects, such as soil erosion, salinization, siltation, eutrophication and loss of water quality. The use of more agrochemicals can damage water quality, health, wildlife and biodiversity. Loss of habitat from the extension of farming is particularly damaging to biodiversity. A developing off-site problem is the production of greenhouse gases by farming systems, including the conversion of forests to farmland. In the future the introduction of genetically engineered species of plants, animals or microbes will need secure control.<br>Work, probably on a catchment basis, is necessary to understand and control these problems. The three main requirements are much better environmental information from the developing world; the selection of environmental indicators to be monitored; and the support of local farmers in protecting the environment. There are encouraging indications of farmer concern and action over obvious on-site damage, but this may not extend to extensive off-site issues. The main danger is that developing food scarcity would cause the environmental issues to be ignored in a race for production. <br>  相似文献   

13.
Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.  相似文献   

14.
Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250–2000 μm], microaggregates [53–250 μm], and mineral fraction [< 53 μm]) at 0–20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China.  相似文献   

15.
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.  相似文献   

16.
The rapidly growing world population puts considerable pressure on the scarce natural resources, and there is an urgent need to develop more efficient and sustainable agricultural production systems to feed the growing population. This should be based on an initial assessment of the physical and biological potential of natural resources, which can vary greatly. The agroecological zonation (AEZ) approach presents a useful preliminary evaluation of this potential, and ensures that representation is maintained at an appropriate biogeographic scale for regional sustainable development planning. The principal AEZs of the world, as described by the Technical Advisory Committee of the Consultative Group on International Agricultural Research, are presented along with their extent and characteristics. Net primary productivity of terrestrial vegetation can be assessed from weather data, and it varies from 1 t dry matter ha-1 yr-1 in high latitude zones and dry regions to 29 t ha-1 yr-1 in tropical wet regions, depending on the climatic conditions. To assess the crop production potential, length of the growing period zones, a concept introduced by the UN Food and Agriculture Organization, is very useful as it describes an area within which rainfall and temperature conditions are suitable for crop growth for a given number of days in the year. These data, combined with the information on soils and known requirements of different food crops, can be used to assess the potential crop productivity. Some perspectives on AEZs and crop production potential are presented by describing the manner in which production potential can be integrated with present constraints. Efforts to intensify production should place emphasis on methods appropriate to the socio-economic conditions in a given AEZ, and on promotion of conservation-effective and sustainable production systems to meet the food, fodder and fuel needs for the future. <br>  相似文献   

17.
Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and (iii) soil resilience in relation to the ease of restoration through judicious management and discriminate use of essential input. Quantitative assessment of soil degradation can be obtained by evaluating its impact on productivity for different land uses and management systems. Interdisciplinary research is needed to quantify soil degradation effects on decrease in productivity, reduction in biomass, and decline in environment quality throught pollution and eutrophication of natural waters and emission of radiatively-active gases from terrestrial ecosystems to the atmosphere. Data from long-term field experiments in principal ecoregions are specifically needed to (i) establish relationships between soil quality versus soil degradation and soil quality versus soil resilience; (ii) identify indicators of soil quality and soil resilience; and (iii) establish critical limits of important properties for soil degradation and soil resilience. There is a need to develop and standardize techniques for measuring soil resilience. <br>  相似文献   

18.
Phosphorus characteristics correlate with soil fertility of albic luvisols   总被引:3,自引:0,他引:3  
The information on phosphorus (P) characteristics of albic luvisols and their effect on plant P uptake is limited. Twelve soils representing typical albic luvisols were collected from farmland of four regions in northeast China, each with various levels of soil fertility. Phosphorus fractions, P adsorption and P supply capacity of the soils were analysed and were correlated with soil fertility and plant P nutrition. Total P in these soils ranged from 0.62–0.91 g kg–1, and comprised 37–51% organic P, and 49–63% in inorganic forms among which the percentage of occluded P was the greatest, followed by Fe-P, Ca-P, Al-P and loosely bound P was the lowest (<1%). Whereas the % of organic P was not clearly affected by fertility, the % of occluded P increased with fertility. By contrast, both % and contents of other P forms decreased with decreasing soil fertility. Soil P adsorption maxima calculated from Langmuir isotherm ranged from 484 to 912 mg kg–1. Soils with low fertility had the strongest P adsorption, and those with medium fertility had the weakest in all collection regions. The supply capacity of P was positively related to soil fertility. Plant growth correlated positively with P forms with available P correlating best, followed by Fe-P and P supply capacity. Organic C correlated with available P, Fe-P, total P, Al-P and P supply capacity but not with organic P. The results suggest that though the albic luvisols contained high total P, they had low P availability, and P application is required for optimal crop production on these soils.  相似文献   

19.
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.  相似文献   

20.
In situ measurements with visible and near-infrared spectroscopy (vis-NIR) provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM), organic carbon (OC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK) and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR) was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM) algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i) the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii) the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90) was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii) in terms of AP and AK, poor predictions were obtained with in situ spectra (R2<0.5, RPD<1.50) either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in situ vis-NIR spectroscopic estimation of soil properties of paddy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号