首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell fusion studies using lymphoblastoid cell lines from Fanconi anaemia (FA) patients have identified five complementation groups (FA-A to FA-E) among European FA patients. In Italy, of the 45 FA families referred to the Italian Registry of Fanconi Anaemia (RIAF), 15 took part in a project for the identification of complementation groups. Since three immortalized lymphoblast lines were resistant to a cross-linking agent, we analysed only 12 patients by complementation analysis and found that 11 belong to complementation group A. Four and seven families came from two geographic clusters in the Veneto and Campania regions, respectively, which are thought to consist of aggregates of related families in reproductive isolation. The clinical characteristics of the patients showed both intra-and interfamilial heterogeneity, although overall the disease had a relatively mild course. Since the populations in both Veneto and Campania are likely to represent genetic isolates, our finding predicts linkage disequilibrium for markers flanking theFAA gene. DNAs from these FA families may thus be utilized for positional cloning of this gene through haplotype disequilibrium mapping.  相似文献   

2.
Fanconi anemia (FA) is an autosomal recessive disorder with diverse clinical symptoms and extensive genetic heterogeneity. Of eight FA genes that have been implicated on the basis of complementation studies, four have been identified and two have been mapped to different loci; the status of the genes supposed to be defective in groups B and H is uncertain. Here we present evidence indicating that the patient who has been the sole representative of the eighth complementation group (FA-H) in fact belongs to group FA-A. Previous exclusion from group A was apparently based on phenotypic reversion to wild-type rather than on genuine complementation in fusion hybrids. To avoid the pitfall of reversion, future assignment of patients with FA to new complementation groups should conform with more-stringent criteria. A new group should be based on at least two patients with FA whose cell lines are excluded from all known groups and that fail to complement each other in fusion hybrids, or, if only one such cell line were available, on a new complementing gene that carries pathogenic mutations in this cell line. On the basis of these criteria, the current number of complementation groups in FA is seven.  相似文献   

3.
The repair of mitomycin C (MMC)-induced DNA crosslinking was analyzed by denaturation-renaturation gel electrophoresis in ribosomal RNA genes in lymphoblastoid cell lines from 4 patients with Fanconi's anemia (FA). In comparison to normal lymphoblastoid cell lines, 2 lines of FA cells belonging to complementation group A clearly exhibited higher sensitivity to MMC and an almost identical deficiency in the removal of DNA crosslinking. A complementation group B cell line, HSC 62, exhibited a lower sensitivity than group A cells and a lesser deficiency in crosslink repair. Another 'non-A' group cell line, HSC 230, reproducibly exhibited even higher sensitivity to MMC than group A cells. The results on MMC crosslinkage removal at the molecular level correlated well with cell survival. The observed subtle differences of repair among the 4 FA cell lines might represent possible genetic differences in the respective FA complementation groups.  相似文献   

4.
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disease with bone marrow failure and predisposition to cancer as major features, often accompanied by developmental anomalies. The cells of patients with FA are hypersensitive to DNA cross-linking agents in terms of cell survival and chromosomal breakage. Of the eight complementation groups (FA-A to FA-H) distinguished thus far by cell fusion studies, the genes for three-FANCA, FANCC, and FANCG-have been identified, and the FANCD gene has been localized to chromosome 3p22-26. We report here the use of homozygosity mapping and genetic linkage analysis to map a fifth distinct genetic locus for FA. DNA from three families was assigned to group FA-E by cell fusion and complementation analysis and was then used to localize the FANCE gene to chromosome 6p21-22 in an 18.2-cM region flanked by markers D6S422 and D6S1610. This study shows that data from even a small number of families can be successfully used to map a gene for a genetically heterogeneous disorder.  相似文献   

5.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A-H). Two of the FA genes (FAA and FAC) have been cloned, and mutations in these genes account for approximately 80% of FA patients. Subtyping of FA patients is an important first step toward identifying candidates for FA gene therapy. In the current study, we analyzed a reference group of 26 FA patients of known subtype. Most of the patients (18/26) were confirmed as either type A or type C by immunoblot analysis with anti-FAA and anti-FAC antisera. In order to resolve the subtype of the remaining patients, we generated retroviral constructs expressing FAA and FAC for transduction of FA cell lines (pMMP-FAA and pMMP-FAC). The pMMP-FAA construct specifically complemented the abnormal phenotype of cell lines from FA-A patients, while pMMP-FAC complemented FA-C cells. In summary, the combination of immunoblot analysis and retroviral-mediated phenotypic correction of FA cells allows a rapid method of FA subtyping.  相似文献   

6.
Human cell lines have been assigned to four complementation groups for immortalization [O.M. Pereira-Smith and J. R. Smith, Proc. Natl. Acad. Sci. USA 85, 6042-6046, 1988]. Three SV40-immortalized epithelial cell lines were fused to cell lines representative of each of these four complementation groups. All three formed senescent hybrids with an SV40-immortalized cell line representative of group A, indicating that SV40 genes do not always cause immortalization via the same genetic mechanism. In contrast to the results of studies with other human cell lines, each of these three cell lines was assigned to more than one complementation group for immortalization. Thus these cell lines may have lost the function of two or more putative senescence genes.  相似文献   

7.
Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one of the four complementation groups. Using microcell fusion, we introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras(+)-transformed derivative of TE85 (143B TK-), all of which were assigned to complementation group C. This chromosome 1 caused no change in proliferative potential of cell lines representing the other complementation groups. A derivative of human chromosome 1 that had lost most of the q arm by spontaneous deletion was unable to induce senescence in any of the immortal cell lines. This finding indicates that the q arm of human chromosome 1 carries a gene or set of genes which is altered in the cell lines assigned to complementation group C and is involved in the control of cellular senescence.  相似文献   

8.
Fanconi anemia (FA) is one of several genetic diseases with characteristic cellular hypersensitivity to DNA crosslinking agents which suggest that FA proteins may function as part of DNA repair processes. At the clinical level, FA is characterized by bone marrow failure that affects children at an early age. The clinical phenotype is heterogeneous and includes various congenital malformations as well as cancer predisposition. FA patients are distributed into eight complementation groups suggesting a complex molecular pathway. Three of the eight possible FA genes have been cloned, although their function(s) have not been identified. FA cells are highly sensitive to DNA crosslinking agents (mitomycin C (MMC) and diepoxybutane), with some variability between cell lines. Sensitivity to monofunctional alkylating agents has been reported in some cases, although these studies were performed with genetically unclassified FA cells. To further analyse and characterize the newly identified FA complementation groups, we tested their sensitivity to UV radiation, monofunctional and bifunctional alkylating agents and to the X-ray mimetic drug bleomycin. We found that FA complementation groups D to H show increased sensitivity to the X-ray mimetic drug bleomycin. Furthermore, the single known FA-H cell line shows increased sensitivity to ethylethane sulfonate (EMS), methylmethane sulfonate (MMS) in addition to the characteristic sensitivity to crosslinking agents, suggesting a broader spectrum of drug sensitivities in FA cells.  相似文献   

9.
V-H4, a mitomycin C (MMC)-sensitive Chinese hamster cell mutant, is phenotypically very similar to Fanconi anemia (FA) cells. Genetic complementation analysis shows that V-H4 belongs to the same complementation group as FA group A cells. Proliferating hybrid cell lines obtained after fusion of V-H4 with normal or FA group B cells show an increased resistance to MMC. Absence of complementation was noted in V-H4 x FA group A hybrid cell lines. This was shown not to be due to the absence of a specific human chromosome. The V-H4 mutant represents the first rodent mutant that is genotypically similar to FA complementation group A cells.  相似文献   

10.
G Ju  M Birrer  S Udem    B R Bloom 《Journal of virology》1980,33(3):1004-1012
Human lymphoblastoid cell lines persistently infected with measles virus release a heterogeneous population of virions. At least 80% of the infectious particles were temperature sensitive for plaque formation at 39 degrees C. Plaque-purified temperature-sensitive mutants from four persistently infected human lymphoblastoid cell lines were shown to be heterogeneous with respect to efficiency of plating at 31 and 39 degrees C, as well as to antigen and RNA production at 39 degrees C. The heterogeneity was confirmed by complementation analysis in which 21 temperature-sensitive isolates were found to represent at least four of the five previously described complementation groups of measles virus. Two isolates complemented four reference temperature-sensitive mutants. These isolates either represent new complementation groups or are members of the fifth complementation group, group E. The majority of isolates were found to have multiple mutations, and group B mutants (RNA-) predominated. Two temperature-sensitive isolates were able to interfere with production of parental measles virus at both permissive and nonpermissive temperatures.  相似文献   

11.
We have isolated emetine-resistant cell lines from Chinese hamster peritoneal fibroblasts and have shown that they represent a third distinct class or complementation group of emetine-resistant mutants, as determined by three different criteria. These mutants, like those belonging to the two other complementation groups we have previously defined, which were isolated from Chinese hamster lung and Chinese hamster ovary cells, have alterations that directly affect the protein biosynthetic machinery. So far, there is absolute cell line specificity with respect to the three complementation groups, in that all the emetine-resistant mutants we have isolated from Chinese hamster lung cells belong to one complementation group, all those we have isolated from Chinese hamster ovary cells belong to a second complementation group, and all those isolated from Chinese hamster peritoneal cells belong to a third complementation group. Thus, in cultured Chinese hamster cells, mutations in at least three different loci, designated emtA, emtB, and emtC, encoding for different components of the protein biosynthetic machinery, can give rise to the emetine-resistant phenotype.  相似文献   

12.
Fanconi anemia (FA) is a rare autosomal recessive disease manifested by bone-marrow failure and an elevated incidence of cancer. Cells taken from patients exhibit spontaneous chromosomal breaks and rearrangements. These breaks and rearrangements are greatly elevated by treatment of FA cells with the use of DNA cross-linking agents. The FA complementation group D gene (FANCD) has previously been localized to chromosome 3p22-26, by use of microcell-mediated chromosome transfer. Here we describe the use of noncomplemented microcell hybrids to identify small overlapping deletions that narrow the FANCD critical region. A 1.2-Mb bacterial-artificial-chromosome (BAC)/P1 contig was constructed, bounded by the marker D3S3691 distally and by the gene ATP2B2 proximally. The contig contains at least 36 genes, including the oxytocin receptor (OXTR), hOGG1, the von Hippel-Lindau tumor-suppressor gene (VHL), and IRAK-2. Both hOGG1 and IRAK-2 were excluded as candidates for FANCD. BACs were then used as probes for FISH analyses, to map the extent of the deletions in four of the noncomplemented microcell hybrid cell lines. A narrow region of common overlapping deletions limits the FANCD critical region to approximately 200 kb. The three candidate genes in this region are TIGR-A004X28, SGC34603, and AA609512.  相似文献   

13.
Summary The construction of permanent hybrid cell lines between xeroderma pigmentosum (XP) cells from different complementation groups allows analysis not only of the degree of repair correction but also of the restoration of biological activity to the UV-irradiated cells. With use of an immortal human cell line (HD2) that expresses excision repair defects typical of XP group D, a series of permanent hybrid cells has been produced with XP cells from groups A to H. Excision repair, as measured by incision analysis and unscheduled DNA synthesis, is restored to normal or near normal levels in crosses involving HD2 and cells from XP groups A, B, C, E, F, G, and I. All these hybrids show complementation for the recovery of normal UV restistance. As expected, hybrids expressing poor incision and hypersensitivity to UV were produced in crosses between HD2 and XPD fibroblasts, but they were also produced without exception when XPH was the partner. In the permanent HD2 x XPD or XPH hybrids, analysis of incision capacity reveals abnormally low activity and therefore that there has been no complementation. The true hybrid nature of HD2 x XPH cells has been confirmed by HL-A and -B tissue typing; moreover, detailed kinetic analysis of incision in these cells shows that the XPH phenotype, rather than the XPD, is expressed, i.e. breaks accumulate at low UV fluence of 1 J/m2. To help confirm these findings, another immortal XPD cell line was used in fusions involving HD2, XPH, or XPI. Cells resistant to ultraviolet were produced only with XPI fibroblasts. These data are discussed in terms of whether XPD and H mutations are likely to be allelic with respect to incision.  相似文献   

14.
The fate of 8-methoxypsoralen (8-MOP)-photoinduced DNA interstrand crosslinks was followed by alkaline elution in Fanconi's anemia (FA) fibroblasts belonging to complementation groups A (FA 150 and FA 402) and B (FA 145) in comparison to a normal (1 BR/3) and a heterozygote (F 311) cell line. Clonogenic cell survival to 8-MOP photoaddition was established in parallel for all cell lines. In comparison to normal cells, group A FA cells demonstrated a higher photosensitivity than group B cells (sensitivity index 2.3 and 1.5, respectively), the heterozygote cell line being only slightly more sensitive. FA cells from both groups A and B demonstrated an incision capacity of crosslinks, the kinetics and extent of which being, however, different from that of normal or heterozygote cells. The incision is slower in FA cells and, at 24 h of post-treatment incubation, the amount of crosslinks incised is clearly lower than that observed in normal cells for group A cells, whereas in group B cells incision approaches the level of normal cells. These results correlate with survival as well as with rates of DNA semi-conservative synthesis after 8-MOP photoaddition.  相似文献   

15.
Biallelic mutations in BRCA2/FANCD1 were recently recognized as a rare cause of Fanconi anemia (FA). Using immunodetection with an antiserum directed against the carboxyterminus of the BRCA2 protein, we screened 38 lymphoid cell lines from FA patients whom we could not previously assign, via retroviral complementation analysis, to any of six known FA complementation groups (FA-A, -C, -D2, -E, -F, or -G). Three of these 38 cell lines lacked the 380-kDa BRCA2 signal on immunoblots. DNA sequencing showed biallelic compound and truncating mutations in two of the immuno-negative cell lines, whereas a monoallelic frameshift mutation and an amino acid substitution were detected in the third cell line. Our data show that less than 10% of unassigned FA cell lines harbor truncating mutations in BRCA2/FANCD1. This finding strongly suggests the existence of (an) additional, as yet unknown FA gene(s).  相似文献   

16.
We have characterized a SV40-transformed human fibroblast cell line (GM6914) derived from a patient with Fanconi anemia (FA) in order to establish its usefulness for biochemical and genetic experiments, including DNA-mediated gene transfer. GM6914 cells have a growth rate similar to that of SV40-transformed normal human fibroblasts and an indefinite lifespan in culture. As has been established for other FA cell types, GM6914 cells have an increased sensitivity to DNA-crosslinking agents such as mitomycin C (MMC). The D10 for GM6914 cells is 8 times lower than for equivalent controls. GM6914 cells also have an elevated frequency of spontaneous chromosome aberrations and this frequency can be increased by MMC concentrations which show no effect on control cells. Genetic complementation studies with lymphoblasts derived from two affected sibs of the donor of GM6914 cells show that GM6914 belongs to FA complementation group A. In DNA-transfection studies using plasmid pRSVneo, colonies of GM6914 cells resistant to the drug G-418 were observed at frequencies ranging from 1.7 to 16 X 10(-4), values similar to those observed with several other SV40-transformed human cell lines. GM6914 should be a useful recipient cell line in experiments using DNA-mediated gene transfer to clone the normal allele of the gene which is defective in FA complementation group A. GM6914 would also be an excellent cell line for studies on mutagenesis, recombination and repair using plasmid vectors.  相似文献   

17.
Previous studies from our laboratory have shown that the absence of G1(G1-condition) in two lines of Chinese hamster cells is dominant over the presence of G1(G1+condition) in a variety of intraspecific cell hybrids. G1+ mutants or variants cna be isolated from G1- cells following mutagenesis and selection. These G1+ mutants fall into multiple complementation groups based on their abilities to form G1- cell hybrids with one another. This is evidence that different mutants have G1 intervals for different reasons, possibly as the result of deficiencies in functions necessary for G1- cell cycles. In this report we have used cell hybrid analysis to ask whether cells of different, naturally occurring G1+ lines of Chinese hamster are able to complement to produce G1- hybrids. We have found three complementation groups among the four G1+ cell lines examined. Therefore, these lines define three different reasons or bases for the existence of a G1 interval. These results lead us to suggest that multiple requirements must be met for these cells to start the S period, but that failure to fulfill only a single and different requirement is responsible for the presence of a G1 interval in any given cell line.  相似文献   

18.
Normal cells in culture exhibit limited division potential, which is used as a model for cellular aging. In contrast, tumor-derived, carcinogen- or virus-transformed cells are capable of dividing indefinitely (immortal). Fusion of normal with immortal human cells yielded hybrids having limited life span, indicating that cellular senescence is a dominant phenotype and that immortality is recessive. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. In order to identify the chromosomes and genes involved in growth regulation, that had been modified in immortal cells, we used the technique of microcell fusion to introduce either a normal human chromosome 11 or 4 into cell lines representative of the different complementation groups. Chromosome 11 had no effect on the in vitro life span of the different immortal human tumor lines. However, when a normal human chromosome 4 was introduced into cell lines assigned to complementation group B, the cells lost the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. These results suggest that a gene(s) on human chromosome 4 has been modified in immortal cell lines assigned to complementation group B, to allow escape from senescence. They also provide evidence for a genetic basis for cellular aging.  相似文献   

19.
We previously described RAG, a mouse adenocarcinoma cell line, as deficient for the induction of major histocompatibility (MHC) class II antigens by IFN-, but responding normally for MHC class I antigen stimulation and anti-viral protection. We had established that the fusion of RAG with various human cell lines restored the induction of MHC class II antigens, whenever the human chromosome 16 was present in somatic cell hybrids. Here we show that the RAG cell line does not exhibit any induction by IFN- ofDMA, DMB, and theinvariant chain (Ii) mRNAs, and that the induction is restored in somatic cell hybrids containing human chromosome 16. In order to define the gene (designatedF16) affected in the RAG cells, we performed a complementation analysis by fusing RAG with previously described human cell lines defective for MHC class II antigen expression (e.g., BLS cell lines), and which belong to five different complementation groups. Our data show that the resulting somatic cell hybrids present an inducible expression of mouse MHC class II antigens, Ii, DMA, and DMB. Therefore, the RAG cell line represents a yet undescribed cellular mutant affected in the expression of MHC class II antigens. In addition, we demonstrate that MHC class II antigens can be constitutively expressed in the RAG cell line when transfected with the cDNA encoding humanCIITA driven by the RSV LTR promoter. Since the complementation analysis assessed that F16 and CIITA are distinct, our data suggest that F16 is required for the expression of CIITA.  相似文献   

20.
Fanconi anemia (FA) is an autosomal recessive chromosomal instability syndrome with at least seven different complementation groups. Four FA genes (FANCA, FANCC, FANCF, and FANCG) have been identified, and two other FA genes (FANCD and FANCE) have been mapped. Here we report the identification, by complementation cloning, of the gene mutated in FA complementation group E (FANCE). FANCE has 10 exons and encodes a novel 536-amino acid protein with two potential nuclear localization signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号