首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome‐wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ~ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic‐benthic axis in both radiations.  相似文献   

2.

Background  

Speciation often occurs in complex or uncertain temporal and spatial contexts. Processes such as reinforcement, allopatric divergence, and assortative mating can proceed at different rates and with different strengths as populations diverge. The Central American Midas cichlid fish species complex is an important case study for understanding the processes of speciation. Previous analyses have demonstrated that allopatric processes led to species formation among the lakes of Nicaragua as well as sympatric speciation that is occurring within at least one crater lake. However, since speciation is an ongoing process and sampling genetic diversity of such lineages can be biased by collection scheme or random factors, it is important to evaluate the robustness of conclusions drawn on individual time samples.  相似文献   

3.
Lake Tanganyika, Africa's oldest lake, harbours an impressive diversity of cichlid fishes. Although diversification in its radiating groups is thought to have been initially rapid, cichlids from Lake Tanganyika show little evidence for ongoing speciation. In contrast, examples of recent divergence among sympatric colour morphs are well known in haplochromine cichlids from Lakes Malawi and Victoria. Here, we report genetic evidence for recent divergence between two sympatric Tanganyikan cichlid colour morphs. These Petrochromis morphs share mitochondrial haplotypes, yet microsatellite loci reveal that their sympatric populations form distinct genetic groups. Nuclear divergence between the two morphs is equivalent to that which arises geographically within one of the morphs over short distances and is substantially smaller than that among other sympatric species in this genus. These patterns suggest that these morphs diverged only recently, yet that barriers to gene flow exist which prevent extensive admixture despite their sympatric distribution. The morphs studied here provide an unusual example of active diversification in Lake Tanganyika's generally ancient cichlid fauna and enable comparisons of speciation processes between Lake Tanganyika and other African lakes.  相似文献   

4.
The rate at which different components of reproductive isolation accumulate with divergence time between species has only been studied in a limited, but growing, number of species. We measured premating isolation and hybrid inviability at four different ontogenetic stages from zygotes to adults in interspecific hybrids of 26 pairs of African cichlid species, spanning the entire East African haplochromine radiation. We then used multiple relaxed molecular clock calibrations to translate genetic distances into absolute ages to compare evolutionary rates of different components of reproductive isolation. We find that premating isolation accumulates fast initially but then changes little with increasing genetic distance between species. In contrast, postmating isolation between closely related species is negligible but then accumulates rapidly, resulting in complete hybrid inviability after 4.4/8.5/18.4 million years (my). Thus, the rate at which complete intrinsic incompatibilities arise in this system is orders of magnitude lower than rates of speciation within individual lake radiations. Together these results suggest divergent ecological adaptations may prevent populations from interbreeding and help maintain cichlid species diversity, which may be vulnerable to environmental degradation. By quantifying the capacity to produce viable hybrids between allopatric, distantly related lineages our results also provide an upper divergence time limit for the “hybrid swarm origin” model of adaptive radiation.  相似文献   

5.
Lemoine  Melissa  Barluenga  Marta  Lucek  Kay  Mwaiko  Salome  Haesler  Marcel  Chapman  Lauren J.  Chapman  Colin A.  Seehausen  Ole 《Hydrobiologia》2019,832(1):297-315

Even though the idea that modes of speciation other than allopatric speciation are possible in nature is now widespread, compelling examples of ecological speciation in sympatry remain rare. We studied an undescribed radiation of haplochromine cichlids in a young crater lake in western Uganda, and in the small river that is nearby but has currently no known surface connection to the lake. We describe two different modes of speciation that occurred in this cichlid lineage within the past 1,500–10,000 years. Not constrained by gene flow, allopatric divergence between river and lake cichlids affects many different morphological traits as well as nuptial colouration—muted in the river, but intensified and polymorphic in lake cichlids—and neutral genetic differentiation. More surprisingly, we demonstrate a case for sympatric speciation within the small lake that is associated with dramatic differences in male breeding colouration (yellow with bright red-chest versus bright blue) and subtle differences in microhabitat, feeding regime and morphology. Reproductive isolation by assortative mating is suggested by significant differentiation between yellow and blue males in neutral markers of gene flow despite complete sympatry. We hypothesize speciation is mediated by divergent selection on sexual signalling between microhabitats.

  相似文献   

6.
Much of the exceptional diversity of cichlid fishes in the African Great Lakes can be explained by geographic variation among isolated populations of species specialised to live on patchily distributed rocky habitat. However, there are also many endemic species that are not specialised for rocky shores. These appear to experience weaker geographic isolation. Major decreases in lake volume may have segregated such populations in isolated refugia in the distant past, but subsequent range changes have likely eliminated most of the phylogeographic signal of these events. Divergence in currently isolated peripheral water bodies may be more amenable to the study of recent processes of allopatric divergence. We investigate a haplochromine cichlid fish, here referred to as Lethrinops sp. ‘chilingali’, isolated in a small satellite lake near Lake Malawi, and the candidate sister taxon, Lethrinops lethrinus, which inhabits shallow muddy habitats in the main lake and associated water bodies. The satellite lake form from Lake Chilingali showed significant morphological differentiation, with a less ventrally-placed mouth and shorter snout, associated with a shift in diet from a diverse range of benthic invertebrates towards specialisation on mid-water chaoborid larvae and pupae. The Lake Chilingali population showed substantially reduced mitochondrial DNA diversity and no haplotype sharing was observed with populations from the main lake system. In laboratory experiments, putative species showed a high degree of assortative mating and territorial males were significantly more aggressive towards intruders of their own population. This study adds to the evidence that rapid evolution of novel phenotypes in peripheral habitats can add to the diversity of lacustrine cichlids through the evolution of at least partial reproductive isolation in allopatry.  相似文献   

7.
In Lake Malawi and Lake Victoria, cichlid fishes have diversified into hundreds of species, many reproductively isolated by mate choice. Territorial males tend to be more aggressive to similar‐coloured males, facilitating coexistence of divergent colour morphs or species. Behavioural mate choice and aggression biases of species and allopatric populations of specialized rocky shore cichlids are influenced by divergent signals such as male colour. Believed to be basal to the Lake Malawi haplochromine radiation, and inhabiting shallow weedy areas of the lake and neighbouring water bodies, Astatotilapia calliptera also shows allopatric variation in colour. Here, it is demonstrated that such signal divergence is associated with tendencies of females to mate with males of their own population and also for males to preferentially attack males of their own population, indicating that preference divergence related to signal divergence in allopatry may have operated throughout the adaptive radiation of the Malawian cichlids. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 180–188.  相似文献   

8.
Rico C  Turner GF 《Molecular ecology》2002,11(8):1585-1590
We demonstrate significant population structuring on an extremely small spatial scale between adjacent demes of a Lake Malawi haplochromine cichlid species of the mbuna group, Pseudotropheus callainos, separated by only 35 m of habitat discontinuity. This substantiates further the notion that intralacustrine allopatric divergence may help to explain the high level of species richness of the mbuna in comparison to other Malawian cichlids, as well as of the Malawian haplochromines as a whole.  相似文献   

9.
The hypothesis of ecological divergence giving rise to premating isolation in the face of gene flow is controversial. However, this may be an important mechanism to explain the rapid multiplication of species during adaptive radiation following the colonization of a new environment when geographical barriers to gene flow are largely absent but underutilized niche space is abundant. Using cichlid fish, we tested the prediction of ecological speciation that the strength of premating isolation among species is predicted by phenotypic rather than genetic distance. We conducted mate choice experiments between three closely related, sympatric species of a recent radiation in Lake Mweru (Zambia/DRC) that differ in habitat use and phenotype, and a distantly related population from Lake Bangweulu that resembles one of the species in Lake Mweru. We found significant assortative mating among all closely related, sympatric species that differed phenotypically, but none between the distantly related allopatric populations of more similar phenotype. Phenotypic distance between species was a good predictor of the strength of premating isolation, suggesting that assortative mating can evolve rapidly in association with ecological divergence during adaptive radiation. Our data also reveals that distantly related allopatric populations that have not diverged phenotypically, may hybridize when coming into secondary contact, e.g. upon river capture because of diversion of drainage systems.  相似文献   

10.
The approximately 500 species of the cichlid fish species flock of Lake Victoria, East Africa, have evolved in a record-setting 100,000 years and represent one of the largest adaptive radiations. We examined the population structure of the endangered cichlid species Xystichromis phytophagus from Lake Kanyaboli, a satellite lake to Lake Victoria in the Kenyan Yala wetlands. Two sets of molecular markers were analysed--sequences of the mitochondrial control region as well as six microsatellite loci--and revealed surprisingly high levels of genetic variability in this species. Mitochondrial DNA sequences failed to detect population structuring among the three sample populations. A model-based population assignment test based on microsatellite data revealed that the three populations most probably aggregate into a larger panmictic population. However, values of population pairwise FST indicated moderate levels of genetic differentiation for one population. Eleven distinct mitochondrial haplotypes were found among 205 specimens of X. phytophagus, a relatively high number compared to the total number of 54 haplotypes that were recovered from hundreds of specimens of the entire cichlid species flock of Lake Victoria. Most of the X. phytophagus mitochondrial DNA haplotypes were absent from the main Lake Victoria, corroborating the putative importance of satellite lakes as refugia for haplochromine cichlids that went extinct from the main lake in the last decades and possibly during the Late Pleistocene desiccation of Lake Victoria.  相似文献   

11.
With about 250 endemic species, Lake Tanganyika contains an extraordinarily diverse cichlid fish fauna, and thus represents an ideal model system for the study of pathways and processes of speciation. The Lamprologini form the most species-rich tribe in Lake Tanganyika comprising about 100 species in seven genera, most of which are endemic to the lake. They are territorial substrate-breeders and represent a monophyletic tribe. By combined analysis of population genetics and geometric morphometric markers, we assessed gene flow among three populations of the highly specialized shrimp-feeding rock-dweller Altolamprologus compressiceps, separated by geographic distance and ecological barriers. Five highly polymorphic microsatellite markers were analyzed in conjunction with 17 landmarks in order to compare genetic differences to body shape differences among populations. Both genetic and morphological analyses revealed significant differentiation among the three studied populations. A significant, but overall relatively low degree of genetic differentiation supports a very recent divergence. Phenotypic differentiation was primarily found in the head region of A. compressiceps. In agreement with findings in other cichlid species, similar adaptations to specialized feeding mechanisms can consequently lead to marginal shape changes in the trophic apparatus.  相似文献   

12.
The cichlid fish of Lake Tanganyika in Eastern Africa are a celebrated example of both ecological and species diversification. Because population subdivision is likely to play an important role in the speciation process, understanding how habitat features interact with species' demographic, behavioral and ecological attributes to influence gene flow and population divergence may help explain the causes of high species richness in this and other systems. Here, we test the roles of isolation-by-habitat and isolation-by-distance in generating fine-scale population genetic structure in three sympatric species of habitat-restricted cichlids in Lake Tanganyika. Using multilocus microsatellite genotypes, we contrast patterns of population differentiation in these habitat specialists along a mosaic coastline of both favorable and unfavorable habitat. Despite their close phylogenetic relationship and shared habitat affinity, these species show striking differences in their pattern of genetic subdivision within the same geographical region, suggesting substantially different patterns of gene flow. In particular, two trophically specialized species exhibit much more restricted gene flow over sandy habitat than a trophically opportunistic species. This result suggests that ecological and behavioral traits have a strong influence on the scale and degree of population subdivision, a finding that has potentially important implications for understanding differential propensities for diversification among lineages and phylogenetic patterns of diversity.  相似文献   

13.
Aim Current estimates of species richness within rapidly evolving species flocks are often highly dependent on the species status of allopatric populations that differ in phenotypic traits. These traits may be unreliable indicators of biological species status and systematists may have inconsistently assigned species among lineages or locations on the basis of these traits, thus hampering comparative studies of regional species richness and speciation rates. Our aim was to develop a method of generating standardized estimates of regional species richness suitable for comparative analysis, and to use these estimates to examine the extent and consistency of species assignment of allopatric populations within rapidly evolving cichlid fish flocks present in three east African lakes. Location Lakes Malawi, Victoria and Tanganyika. Methods Using published taxon co-occurrence data, a novel approach was employed to calculate standardized ‘minimum’ estimates of regional species richness for hard substrate associated complexes of cichlids within each of the lakes. Minimum estimates were based on an explicit assumption that if taxa present on equivalent habitats have disjunct distributions, then they are allopatric forms of the same species. These estimates were compared with current observed ‘high-end’ regional species richness estimates for those complexes to determine the consistency of species assignment of allopatric populations between lineages within a lake. A ‘sympatry’ index was developed to enable comparisons of levels of species assignment of allopatric populations between-lakes to be made. Results Within each lake, the minimum and high-end estimates for species richness were significantly correlated across complexes, indicating that the complexes that contain more recognized species contain the most genuine biological species. However, comparisons of complexes among lakes revealed considerable differences. For equivalent geographical areas, substantially higher proportions of recognized species were totally allopatric within the studied Lake Malawi and Lake Victoria complexes, than those of Lake Tanganyika. Main Conclusions Among African lakes, levels of assignment to species status of allopatric populations were found to be distinctly different. It is unclear whether the discrepancies are a consequence of differences between the lake faunas in degrees of phenotypic divergence among allopatric populations, or are simply the result of inconsistent taxonomic practices. In either case, these results have considerable wider relevance for they emphasize that quantitative measures of regional and beta diversity are critically dependent on the species status of allopatric populations, an issue usually neglected in comparative studies of species richness. The technique introduced here can be used to standardize measures of regional diversity of lineages for comparative analyses, potentially enabling more accurate identification of processes influencing rates of speciation.  相似文献   

14.
Aim Free‐ranging benthopelagic fishes often have large population sizes and high rates of dispersal. These traits can act to homogenize population structure across the distributional range of a species and to reduce the likelihood of allopatric speciation. The apparent absence of any barriers to gene flow among populations, together with prior molecular evidence for panmixia across the ranges of three species, has resulted in Diplotaxodon, a genus of benthopelagic cichlid fishes of Lake Malawi, being proposed as a candidate case of sympatric speciation. Our aim was to further investigate this possibility by testing for intraspecific genetic subdivision among breeding populations, and intraspecific differences in breeding habitat. Location Lake Malawi, central‐east Africa. Methods We analysed eight microsatellite DNA loci to test for spatial genetic differences among populations on breeding grounds of eight Diplotaxodon species. We also tested for temporal population genetic differences within breeding grounds of three species. Records of ripe Diplotaxodon encountered during sampling were analysed to test if spatial variation in assemblage structure was linked to nearshore water depth and geographic proximity of sampling sites. Results Consistent with previous molecular evidence, within four of the eight species tested we found no evidence of spatial genetic structuring among breeding populations. However, within the other four species we found slight yet significant spatial genetic differences, indicating restricted gene flow among breeding grounds. There was no evidence of temporal genetic differences within sites. Analyses of the distributions of ripe Diplotaxodon revealed differences in assemblage structure linked to nearshore water depth. Main conclusions Together, these results demonstrate both the evolution of fidelity to deep‐water breeding locations in some Diplotaxodon species, and differences in breeding habitat among species. These findings are consistent with a role for divergence of breeding habitat in speciation of these cichlids, possibly promoted by dispersal limitation among geographically segregated spawning aggregations.  相似文献   

15.
Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake–stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake–stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake–stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton‐biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population‐assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake–stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes.  相似文献   

16.
Habitat configuration is expected to have a major influence on genetic exchange and evolutionary divergence among populations. Aquatic organisms occur in two fundamentally different habitat types, the sea and freshwater lakes, making them excellent models to study the contrasting effects of continuity vs. isolation on genetic divergence. We compared the divergence in post-glacial populations of a cosmopolitan aquatic plant, the pondweed Potamogeton pectinatus that simultaneously occurs in freshwater lakes and coastal marine sites. Relative levels of gene flow were inferred in 12 lake and 14 Baltic Sea populations in northern Germany using nine highly polymorphic microsatellite markers developed for P. pectinatus. We found highly significant isolation-by-distance in both habitat types (P < 0.001). Genetic differentiation increased approximately 2.5-times faster among freshwater populations compared with those from the Baltic Sea. As different levels of genetic drift or population history cannot explain these differences, higher population connectivity in the sea relative to freshwater populations is the most likely source of contrasting evolutionary divergence. These findings are consistent with the notion that freshwater angiosperms are more conducive to allopatric speciation than their life-history counterparts in the sea, the relative species poor seagrasses. Surprisingly, population pairs from different habitat types revealed almost maximal genetic divergence expected for complete reproductive isolation, regardless of their respective geographical distance. Hence, the barrier to gene flow between lake and sea habitat types cannot be due to dispersal limitation. We may thus have identified a case of rapid incipient speciation in post-glacial populations of a widespread aquatic plant.  相似文献   

17.
Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes.  相似文献   

18.
The evolution of reproductive isolation in spatially structured populations   总被引:3,自引:0,他引:3  
Abstract.— Recent models of speciation have incorporated population structure and migration into the classic model of speciation in which reproductive isolation arises as a by-product of divergence. In this paper, we expanded these models to explore the joint effects of migration and population subdivision on speciation in a spatially explicit context. The results of our simulation support previous results concerning the influence of population subdivision on the accumulation of reproductive isolation. The simulation also shows that speciation in subdivided populations occurs most rapidly when subpopulations are not strictly allopatric. These results counter the widespread notion that speciation is most likely to occur in allopatric populations and suggest that there are useful insights to be gained by incorporating increasingly realistic types of population structure into models of speciation.  相似文献   

19.
Geophysical data are currently being interpreted as evidence for a late Pleistocene desiccation of Lake Victoria and its refilling 14,600 years ago. This implies that between 500 and 1000 endemic cichlid fish species must have evolved in 14,600 years, the fastest large-scale species radiation known. A recent review concludes that biological evidence clearly rejects the postulated Pleistocene desiccation of the lake: a 14,600 year history would imply exceptionally high speciation rates across a range of unrelated fish taxa. To test this suggestion, I calculated speciation rates for all 41 phylogenetic lineages of fish in the lake. Except for one cichlid lineage, accepting a 14 600 year history does not require any speciation rates that fall outside the range observed in fishes in other young lakes around the world. The exceptional taxon is a lineage of haplochromine cichlids that is also known for its rapid speciation elsewhere. Moreover, since it is unknown how many founding species it has, it is not certain that its speciation rates are really outside the range observed in fishes in other young lakes. Fish speciation rates are generally faster in younger than in older lakes, and those in Lake Victoria, by far the largest of the young lakes of the world, are no exception. From the speciation rates and from biogeographical observations that Lake Victoria endemics, which lack close relatives within the lake basin, have such relatives in adjacent drainage systems that may have had Holocene connections to Lake Victoria, I conclude that the composition of the fish assemblage does not provide biological evidence against Pleistocene desiccation. It supports a hypothesis of recent colonization from outside the lake basin rather than survival of a diverse assemblage within the basin.  相似文献   

20.
During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco‐morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite‐based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号