首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The growth and function of the conodont skeletal apparatus have important implications for early vertebrate relationships and the evolution of vertebrate hard tissues, yet they are poorly understood. Analysis of element length, platform linear dimensions, and platform area in discrete Pa elements of Carboniferous Idiognathodus and Gnathodus bilineatus reveals that the platform increased in size at a rate significantly above that required to maintain geometric similarity. Measurements of P, M and S elements in bedding-plane assemblages of Idiognathodus and G. bilineatus indicate that relative to Pa element length, Pb and S element growth was isometric, whereas M elements grew with negative allometry. There is no evidence to support loss or resorption of S and M elements in later growth stages, or to indicate periodic shedding and replacement of elements. These results are important for understanding apparatus and element Function. The positive allometry of the Pa element platform supports interpretations of a mashing or grinding tooth-like Function for platformed Pa elements. If conodonts were active suspension-feeders, the increasing food requirements of a growing conodont would require the filter array formed by the S and M elements to have grown at a rate significantly above isometry. The lack of positive allometry of S and M elements indicates that conodonts were not suspension-feeders and supports hypotheses that conodonts fed with a raptorial apparatus and teeth. □ Conodonts, vertebrates, skeletal apparatus, ontogeny, allometry, function, suspension-feeding, teeth.  相似文献   

2.
Knowledge of the conodont skeleton, in terms of the morphology of the elements and the positions they occupy, provides the foundation for understanding of homology, taxonomy and evolutionary relationships in conodonts. This knowledge also underpins analyses of conodont functional morphology and feeding. Direct evidence of skeletal anatomy and apparatus architecture comes from natural assemblages: fossils that preserve together the articulated remains of the conodont apparatus, either collapsed onto a bedding plane or as clusters of elements in which juxtaposed and overlapping elements have been fused together by diagenetic minerals. Here we describe six clusters of the biostratigraphically important conodont Hindeodus parvus from the Lower Triassic Shangsi section, Sichuan Province, South China. Five of these clusters represent the partial remains of articulated skeletons, providing direct evidence of the number and arrangement of elements in the apparatus. Combined with data from previously published natural assemblages this provides a test of the hypothesis that Triassic conodonts had a reduced dentition. Hindeodus parvus possessed a complete raptorial array of two M and nine S elements (unpaired S0; symmetrically paired S1, S2, S3, S4); the paired P1 locations were occupied by carminiscaphate elements, but the apparatus lacked P2 elements. This is consistent with broader evidence for a particularly high degree of integration and constraint operating on the S–M array of morphologically complex conodonts, leading to conserved architecture of the array over a period of more than 250 million years. The loss of elements from the P domain implies a change in food processing ability and, given the predominance of data from P elements in conodont taxonomy and biostratigraphy, the hypothesis of element loss from the P domain has significant implications for the broader understanding of conodont diversity and evolutionary patterns.  相似文献   

3.
Analysis of numerous conodont element clusters from the Lower Ordovician cherts of the Burubaital Formation in central Kazakhstan reveals that the apparatus of Paracordylodus gracilis Lindstro¨m, 1955 consisted of 15 elements: two M elements, nine S elements (including 1 S0), and four P elements (2 P1, 2 P2). The clusters probably originated as faecal pellets, but the best preserved indicate that the architecture of the apparatus of P. gracilis was comparable to that of ozarkodinid conodonts, providing strong support for the hypothesis that the 15-element 2M-9S-4P apparatus plan was plesiomorphic for conodonts with morphologically complex elements. All the elements within the P. gracilis clusters appear to be at a similar stage of ontogeny, and there is no evidence for late addition or replacement of elements. Analysis of element growth suggests that the relative dimensions of some elements changed during ontogeny, but the available data support the hypothesis that the growth of the apparatus as a whole was isometric. The size distribution of P. gracilis in the Burubaital Formation suggests that individuals in a particular size range were preferentially selected for consumption by predators. The identity of these predators is unknown, but they may have included other P. gracilis .  相似文献   

4.
The application of high-resolution X-ray microtomography on conodont natural assemblages has provided new information on the structure of the elements and enabled the three-dimensional reconstruction of apparatuses. We herein report four conodont natural assemblages from uppermost Lower Qinglong Formation, Longtan, Nanjing, East China. Using X-ray microtomography, we reconstructed the apparatus of the end-Smithian (Olenekian, Early Trassic) Scythogondolella milleri. Our result confirms that Scythogondolella has an octomembrate apparatus composed of 15 elements (a single S0 element, two pairs of S1–4, M and P1–2 elements) like other gondolelloid apparatuses that have been tested by their corresponding natural assemblages, including Neogondolella, Novispathodus and Nicoraella. Element morphology of Scythogondolella closely resembles that of Neogondolella apparatus from the Illyrian (Anisian, Middle Triassic) of Monte San Giorgio: an alate (hibbardellan) S0 element with two long lateral processes that meet at a denticle anterior of the cusp, a bipennate (hindeodellan) S3 element with a bifurcated anterior process branching from the third denticle anterior of the cusp and an enantiognathiform S2 element with two dissimilar processes of nearly equal in length. It differs from the latter in the length of the inner-lateral process of M element and the posterior process of S0 and S3–4 elements without considering the obvious morphological differences in P elements between them. The element positional homologues of Scythogondolella conforms to those of the standard 15-element plan shared primitively among ozarkodinin, prioniodinin and prioniodontid conodonts, and again confirms that the breviform digyrate elements of cypridodellan and enantiognathiform morphotypes occupy the S1 and S2 positions, respectively, within the superfamily Gondolelloidea.  相似文献   

5.
《Palaeoworld》2019,28(4):429-440
The composition of conodont apparatuses is crucial for understanding the feeding mechanisms of these early vertebrates. However, the multielement apparatus reconstructions of most species remain equivocal because they have been inferred from loose element collections, guided by knowledge from rare articulated ‘bedding plane assemblages’ and fused clusters, often from distantly related taxa. Even these natural assemblages can be difficult to interpret because the component elements can be closely juxtaposed or embedded in matrix, making it hard to discern the morphology of each element and their relative positions within the architecture of the feeding apparatus. Here we report five exceptionally preserved conodont clusters from the Middle Triassic Luoping Biota, Yunnan Province, Southwest China. These materials were scanned using synchrotron radiation X-ray tomographic microscopy (SRXTM), revealing the morphology and positional homology of the component elements in the fused clusters. We confirm that the apparatus of Nicoraella was composed of eight types of elements, comprising a total of 15 elements. SRXTM reveals the positional homologies of the component elements, viz. a single alate element is located in the S0 position, flanked successively abaxially by pairs of breviform digyrate S1 and S2 elements, bipennate S3 and S4 elements, and a pair of inwardly curved breviform digyrate M elements. Carminate elements occupy the P1 and P2 positions. The apparatus of Nicoraella is among the most completely characterised of all conodonts and serves as a template for the reconstruction of gondollellids.  相似文献   

6.
The skeletal architecture of conodonts of the order Prioniodinida Sweet, 1988, is poorly understood. Undisturbed or slightly disturbed natural assemblages are rare. A three-dimensional apparatus plan has been constructed using scale models of the elements of Idioprioniodus , based on late Mississippian and late Pennsylvanian (Carboniferous) assemblages from Montana and Illinois, USA. The interpretation of the architecture is based on symmetry relationships between the various elements. A revised element notation scheme is proposed for the apparatus. □ Conodonts, apparatus, palaeobiology, Prioniodinida , Idioprioniodus.  相似文献   

7.
Despite lacking jaws and substantial rigid support for feeding muscles, hagfishes can forcefully grasp and ingest chunks of flesh from their prey. When feeding, bilaterally folding dental plates protrude from the mouth, then forcefully retract. This cyclic protraction and retraction occurs in the anterior region of the hagfish feeding apparatus (HFA) and involves both a cartilaginous skeleton and a complex array of muscles that act as a hydrostat. We recorded motor patterns from the largest muscles in the HFA in six specimens of Myxine glutinosa: the deep protractor muscle (DPM), clavatus muscle (CM), perpendicularis muscle (PM), and tubulatus muscle (TM). Individuals normally used four gape cycles to ingest food and four gape cycles to intraorally transport food. We measured burst duration from each muscle and the onsets of kinematic events and the onsets of CM, PM, and TM bursts relative to the onset of the DPM. The DPM fired during protraction, while the CM, PM and TM fired during retraction. Our study corroborates our anatomical predictions about DPM and CM function. Activation of the circumferentially and vertically oriented fibers of the TM and PM stiffens the origin of the CM, allowing it to forcefully retract the dental plates. The progressive decrease in retractor muscle activity during gape cycles following ingestion suggests a reliance on passive properties of the musculoskeletal system for retraction.  相似文献   

8.
Conodonts have been considered the earliest skeletonizing vertebrates and their mineralized feeding apparatus interpreted as having performed a tooth function. However, the absence of jaws in conodonts and the small size of their oropharyngeal musculature limits the force available for fracturing food items, presenting a challenge to this interpretation. We address this issue quantitatively using engineering approaches previously applied to mammalian dentitions. We show that the morphology of conodont food-processing elements was adapted to overcome size limitations through developing dental tools of unparalleled sharpness that maximize applied pressure. Combined with observations of wear, we also show how this morphology was employed, demonstrating how Wurmiella excavata used rotational kinematics similar to other conodonts, suggesting that this occlusal style is typical for the clade. Our work places conodont elements within a broader dental framework, providing a phylogenetically independent system for examining convergence and scaling in dental tools.  相似文献   

9.
Abstract:  Natural assemblages of a new conodont taxon, Notiodella keblon, from the Upper Ordovician Soom Shale Lagerstätte of South Africa contain 17 elements. This is the first time that a 17‐element apparatus plan has been unequivocally demonstrated in conodonts. The apparatus comprises paired P1, P2, P3, M, S1, S2, S3 and S4 elements and an unpaired, axial S0 element and provides a new template for use in the reconstruction of apparatuses from the collections of dispersed elements, particularly for those with icrion‐bearing P1 elements and perhaps for other balognathids.  相似文献   

10.
In a greenhouse experiment Meloidogyne graminis was pathogenic to ''Tifdwarf'' bermudagrass, causing significant reduction in plant weight. Roots and tops of inoculated grass weighed 28.4% less than non-inoculated grass 8 months after inoculation. Clipping weight of nematode-infected turf weighed 68.9% less than clippings from non-infected turf. Histopathological studies showed that the head of the female nematode penetrated the vascular system and resulted in giant cell formation in the feeding area. The nematode body remained in the cortex parallel to the vascular system. Eggs were deposited at the posterior of the nematode in a gelatinous matrix in the cortex. M. graminis fed with its anterior end oriented toward the growing root tip. M. incognita had no set body orientation pattern when feeding on bermudagrass.  相似文献   

11.
A natural conodont assemblage,Prooneotodus tenuis (MÜller, 1959) was discovered in shales in Zone I of the Upper Cambrian of Hunneberg, Väastergötland, Sweden. It is composed of 12 similar single cone elements, which form 6 pairs of different size. The largest is more than twice the size of the smallest. This variation in size together with the occurrence of between 8-12 elements in conspecific assemblages recorded by Miller & Rushton (1973) makes it likely that during growth the animal added new elements to the apparatus. Should this be applicable to all conodonts, this observation would be of some relevance in the statistical reconstruction of conodont apparatusses.  相似文献   

12.
Conodonts constitute the earliest evidence of skeletal biomineralization in the vertebrate evolutionary lineage, manifest as a feeding apparatus of tooth‐like elements comprised of enamel‐ and dentine‐like tissues that evolved in parallel with these canonical tissues in other total‐group gnathostomes. As such, this remarkable example of evolutionary parallelism affords a natural experiment in which to explore the constraints on vertebrate skeletal evolution. Using finite element analysis, informed by occlusal and microwear analyses, we tested the hypothesis that coincidence of complex dental function and microstructural differentiation in the enamel‐like tissues of conodonts and other vertebrates is a consequence of functional adaptation. Our results show topological co‐variation in the patterns of stress distribution and crystallite orientation. In regions of high stress, such as the apex of the basal cavity and inner parts of the platform, the crown tissue comprises interwoven prisms, discontinuities between which would have acted to decussate cracks, preventing propagation. These results inform a general occlusal model for platform conodont elements and demonstrate that the complex microstructure of conodont crown tissue is an adaptation to the dental functions that the elements performed.  相似文献   

13.
Photoperiod plays an important role in controlling the feeding rhythmicity of juvenile fishes. Studies on feeding and spatial distribution pattern were made on wild populations of different juvenile stages of Chitala chitala, a threatened species in India. Results indicated that the prey preference of the fish increased with advancement of developmental stages. Moreover, nocturnal feeding was found to be more significant in the juveniles. Thus, feeding pattern of the different juvenile stages of Chitala is characterized by voracious predatory activity at dark condition. The vector controlling potential of the juvenile stages of Chitala specifically on mosquito and chironomid larvae was also significant. Studies on the distribution pattern of juvenile fishes were made with various combinations, viz. with or without food, in open surface and structured environments and observed during day as well as in dark regime. The juvenile distribution was clumped in open and closed environment during day time to minimize the chances of predation and juvenile mortality irrespective of food availability. A random distribution of juvenile fishes seemed to be advantageous for increasing feeding activity as observed in the experiment. This study is a pointer to the survival strategy of the larvae of C. chitala in their natural habitat which may be important from the perspective of conservation.  相似文献   

14.
The feeding kinematics, suction and hydraulic jetting capabilities of captive harbor seals (Phoca vitulina) were characterized during controlled feeding trials. Feeding trials were conducted using a feeding apparatus that allowed a choice between biting and suction, but also presented food that could be ingested only by suction. Subambient pressure exerted during suction feeding behaviors was directly measured using pressure transducers. The mean feeding cycle duration for suction-feeding events was significantly shorter (0.15±0.09 s; P<0.01) than biting feeding events (0.18±0.08 s). Subjects feeding in-water used both a suction and a biting feeding mode. Suction was the favored feeding mode (84% of all feeding events) compared to biting, but biting comprised 16% of feeding events. In addition, seals occasionally alternated suction with hydraulic jetting, or used hydraulic jetting independently, to remove fish from the apparatus. Suction and biting feeding modes were kinematically distinct regardless of feeding location (in-water vs. on-land). Suction was characterized by a significantly smaller gape (1.3±0.23 cm; P<0.001) and gape angle (12.9±2.02°), pursing of the rostral lips to form a circular aperture, and pursing of the lateral lips to occlude lateral gape. Biting was characterized by a large gape (3.63±0.21 cm) and gape angle (28.8±1.80°; P<0.001) and lip curling to expose teeth. The maximum subambient pressure recorded was 48.8 kPa. In addition, harbor seals were able to jet water at food items using suprambient pressure, also known as hydraulic jetting. The maximum hydraulic jetting force recorded was 53.9 kPa. Suction and hydraulic jetting where employed 90.5% and 9.5%, respectively, during underwater feeding events. Harbor seals displayed a wide repertoire of behaviorally flexible feeding strategies to ingest fish from the feeding apparatus. Such flexibility of feeding strategies and biomechanics likely forms the basis of their opportunistic, generalized feeding ecology and concomitant breadth of diet.  相似文献   

15.
J. M. Scott 《Hydrobiologia》1983,104(1):155-166
The evolution of rotifer feeding/ nutritional studies is discussed together with their relevance to ecological observations. Aseptic conditions and initially synxenic cultures are regarded as a basis for nutritional work. The marine rotifer Encentrum linnhei requires the amino acid dl-tryptophan as a supplement to the food-alga Brachiomonas submarina. Observations on feeding rotifers in natural water samples, together with the morphology of their feeding mechanisms, show Encentrum to be an omnivore; a natural source of tryptophan is suggested. Vitamin B12 and thiamine requirements of Encentrum and Brachionus plicatilis are examined and evidence shown for the quantitative control of the former vitamin by the rotifer's food algae. Axenic cultivation of rotifers is discussed and restricted growth of Brachionus reported under such conditions.  相似文献   

16.
The repeated emergence of similar morphologies in the dental elements of Permian Sweetognathus conodonts has been a hypothesized example of parallel evolution. To test if morphological parallelisms occur between isolated Sweetognathus lineages, this study uses two-dimensional-based geometric morphometrics combined with a revised and expanded phylogeny of Permian Sweetognathus conodonts to quantify dental element trait distributions and compare the phenotypic trajectories between lineages. A hierarchical clustering method was used to identify recurrent species pairs based on principal component scores describing their morphological variation, with the further incorporation of widely used ecological metrics such as limiting similarity and morphological overlap. Our research implies that a major contributor to conodont diversity in Palaeozoic marine trophic networks is the emergence of recurrent parallel morphologies via disruptive and directional selection. This study illustrates the mechanisms through which conodonts achieved their status as hyper-diverse predators and scavengers, contributing substantially to the complexity of Palaeozoic marine communities.  相似文献   

17.
While much is known about the ecological and functional morphology of feeding in lower vertebrates, studies of elasmobranch feeding over ontogeny are broadly lacking. In this study, the ontogeny of feeding behavior and morphology were investigated in neonatal and young-of-the-year leopard sharks Triakis semifasciata using morphometric measurements of growth and high-speed videography in a longitudinal study. Five food types were used during filming sessions to facilitate differentiation of modulation and variation over ontogeny. Functional aspects of muscle and buccal volume scaling were investigated through dissection. Growth over ontogeny was shown to influence numerous kinematic variables, while intra- and inter-individual variability was the dominant factor affecting feeding behavior. Modulation of feeding behavior based on food size and elusiveness was present for timing variables and predator motion during the strike, but not for food motion or the relative extent of buccal expansion. Allometric growth occurred in all aspects of external cranial morphology measured, resulting in a shallower head profile, anterior displacement of the mouth, and relatively larger jaw musculature over ontogeny. While the degree to which morphology constrains or enhances behavior cannot be directly quantified, variability in behavior greatly exceeds variability in morphology over early ontogeny. Maintenance of a behaviorally and morphologically versatile feeding apparatus throughout ontogeny is proposed to enhance the exploitation of resources and facilitate a diverse diet in T. semifasciata under variable environmental conditions.  相似文献   

18.
When foraging on carrion resources, the wasp Vespula germanica usually makes repeated visits to the feeding site until depleting the resource. In the present study we analyzed how environmental cues affect wasps' behavior when re‐locating a protein food source. We studied this behavior in two different natural habitats: closed and open habitats. As closed habitats have more references to orient wasps to the feeding site than open habitats, we hypothesized that they would return to the foraging site more frequently in closed habitats than in open ones. We tested this hypothesis by studying wasp behavior in three different natural habitat conditions: (i) closed habitats, (ii) open habitats, and (iii) open habitats artificially modified by adding five sticks with flagging. Experiments consisted of training individual wasps to feed from a certain array, and at the testing phase we removed food and displaced the array by 60 cm. Therefore, we recorded wasps’choices when returning to the training area, by counting both the wasps’first approaches and the number of visits to the original feeding site and the displaced array. Wasps' behavior while re‐locating a protein food source was different if foraging at open or closed habitats. Wasps more frequently revisited a previous feeding location when foraging in closed habitats than when foraging in open ones. Furthermore, wasps more frequently visited the displaced array than the original feeding site in all three treatments. Nevertheless, when wasps were trained in closed habitats, they returned to the original feeding site more frequently than if trained in open ones. Interestingly, when five sticks with flagging were added in open habitats, wasps responded similarly as in closed habitats without these references. The results show that foraging behavior in V. germanica seems to be different in closed and open habitats, probably associated with the existence of references that guide foragers when re‐locating undepleted resources.  相似文献   

19.
Feeding and egg-laying of Hoplolaimus columbus were observed on excised alfalfa (cultivar ''DuPuits'') root cultures in 1.0% nutrient agar. Feeding was ectoparasitic on cortical cells in the maturation zone of the root. Oocytes were first observed in the anterior ovary of the feeding female 8-9 days after feeding began. Globular secretions emanating from the vagina and vulva preceded migration of the posterior-most oocyte of the anterior gonad into the columella. The egg shell was formed within 8 h, and the egg was laid within 12-24 h. The eggs differed from those of other plant-parasitic nematodes in having a stalk on the distal end. The average time required from egg-laying to hatching was 12 days in water and in alfalfa root cultures.  相似文献   

20.
Hindeodus parvus and Hindeodus typicalis occur in a deep‐water chert and claystone section in the Mino Terrane, Japan, which has been identified as a Jurassic accretionary complex. Conodont fossils are preserved as natural assemblages of impression fossils on bedding planes in claystone. In this study, 13 assemblages of Hindeodus species were recognized, comprising at most 13 elements which generally maintain the original composition and structure of an apparatus. We discriminated pairs of carminiscaphate P1, angulate P2 and makellate M elements, as well as a single alate S0 element and two digyrate and four bipennate elements constituting the S array. Although the digyrate and bipennate elements are preserved in the S2 and S3–4 positions, respectively, a pair of S1 elements was not found due to incompleteness in the natural assemblages. The conodont biostratigraphy indicates that the lithological boundary between chert and claystone units in the study section corresponds exactly to the Permian–Triassic boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号