首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Full-grown Xenopus laevis oocytes were incubated in NaHCO3 buffer equilibrated with carbon dioxide (5 to 100%). Germinal vesicle breakdown never occurred in spite of the appearance of the characteristic white spot at the animal pole. The effect of carbon dioxide was analyzed during progesterone-induced maturation. Carbon dioxide did not inhibit the early steps of maturation whereas it inhibited germinal vesicle breakdown even when applied 4 hr after the initial hormonal trigger. When oocytes were treated transiently in NaHCO3 buffer equilibrated with carbon dioxide and further incubated in Tris buffer, drastic delay in the kinetic of germinal vesicle breakdown was observed. Inhibition of progesterone-induced maturation by carbon dioxide treatment is coincident with the time of maturation promoting factor appearance (MPF). On the basis of microinjection experiments of MPF into recipient oocytes, it was also shown that MPF expression is not inhibited by carbon dioxide and thus indicates that the late phase of MPF formation and/or MPF amplification is a carbon dioxide-sensitive period.  相似文献   

2.
Cholera toxin inhibition of progesterone-induced meiosis of Xenopus laevis oocytes in vitro has been correlated with increased cAMP levels. Inhibition of germinal vesicle breakdown (Gvbd) and cAMP increase occurred after a lag period of 2 hr, when cholera toxin was injected, or 4--5 hr, when applied externally. The ability of the maturation-promoting factor (Mpf) to provoke Gvbd when injected into recipient oocytes was found to be dependent upon whether the oocytes had been exposed to cholera toxin alone or to toxin and progesterone. With the former, cAMP levels were elevated and Mpf activity was abolished, whereas with the latter, the increase in cAMP was less pronounced and Mpf activity was observed. Injection of cAMP or its 8-thio derivatives shortly before the appearance of progesterone-induced Mpf abolished Gvbd. If injected earlier or later, no inhibition was observed. In contrast, cholera toxin inhibited maturation even when added several hours before progesterone, suggesting a sustained accumulation of cAMP. No Gvbd occurred when 8-thio-methyl-cAMP was injected together with Mpf. These data suggest that cAMP is involved in the control of the formation/amplification and/or activity of Mpf-a result which may be of general significance in cell division mechanisms.  相似文献   

3.
Processes of oocyte maturation that may be affected by boron (B) deficiency were studied to potentially determine a possible biochemical role of B in the Xenopus laevis oocyte. More specifically, the Xenopus oocyte membrane progesterone receptor (OMPR) in B-deficient oocytes was characterized by evaluating progesterone affinity for the OMPR and OMPR responsiveness to progesterone stimulation. The responsiveness of B-deficient oocytes to microinjection of a purified oocyte cytoplasmic fraction (OCF) from B-adequate oocytes was also studied to evaluate which aspects of the maturation process were affected by B deficiency. Results suggested that B deficiency resulted in incomplete oocyte maturation and that maturation could not be induced by the administration of exogenous progesterone. Progesterone successfully induced germinal vesicle breakdown (GVBD) in oocytes from females fed a B-supplemented diet (+B) and females administered a traditional diet of beef liver and lung (B adequate). Addition of exogenous B to the -B oocytes increased the rate of progesterone-induced GVBD slightly. The B-deficient X. laevis oocytes were capable of undergoing GVBD when endogenously stimulated by microinjected purified B-adequate OCF. These results indicated that the inability of the B-deficient oocytes to undergo GVBD was not associated with the cytoplasmic induction process specifically, but possibly in the progesterone receptor or signal transduction pathways. Radio-binding studies found that progesterone binding to the B-deficient OPMR was greatly reduced compared to B-adequate or B-supplemented OMPR. Moreover, washout studies determined that progesterone binding to the OMPR in B-deficient oocytes was more transient than the B adequate or +B oocytes.  相似文献   

4.
The incorporation of [35S]methionine into polypeptides during progesterone-induced meiotic maturation of Xenopus laevis oocytes was studied by two-dimensional polyacrylamide gel electrophoresis. Five modifications were consistently observed: two polypeptides of an approximate molecular weight of 150K daltons and pI 5 were new proteins, two represent increased incorporation and one was decreased incorporation. Cholera toxin inhibited the appearance of the modifications induced by progesterone. Actinomycin and enucleation did not significantly alter the modifications. These data indicate that a good correlation exists between the modifications in protein synthesis induced by progesterone and the resumption of meiotic cell division.  相似文献   

5.
During the course of maturation of Xenopus laevis oocyte a burst of phosphorylation occurs around germinal vesicle breakdown. At the same time a relative drop in a unique phosphoprotein (protein I; mot wt ~40,000) is observed. Enucleation of [32P] labeled oocytes has shown the cytoplasmic localization of protein I. Methylxanthines and cholera toxin, which inhibit progesterone-induced maturation, block the burst of phosphorylation and do not change the amount or the distribution of [32P] phosphoproteins.  相似文献   

6.
Experiments were performed to determine if elevation of cumulus cell cAMP results in an increase in mouse oocyte cAMP while the heterologous gap junctions were intact. Both follicle-stimulating hormone (FSH) and cholera toxin induced a marked increase (>20-fold) in intracellular cAMP in isolated mouse cumulus cell-oocyte complexes in the presence of 3-isobutyl-1-methyl xanthine (IBMX). Concomitantly, both FSH and cholera toxin transiently inhibited resumption of meiosis of cumulus cell-enclosed but not denuded oocytes. The transient nature of the inhibitory effect produced by either FSH or cholera toxin was correlated with the cAMP level in the cumulus cell-oocyte complex. The inhibitory effect, however, was apparently not due to movement of cumulus cell cAMP to the oocyte via the functional heterologous gap junctions between cumulus cells and the oocyte. Radioimmunoassay of cAMP in oocytes free of attached cumulus cells or cumulus cell-enclosed oocytes exposed to either FSH or cholera toxin revealed that both groups of oocytes contained similar amounts of cAMP (about 0.14 fmole/oocyte). Metabolic labeling of cumulus cell-oocyte complexes with [3H]adenosine followed by incubation with either FSH or cholera toxin resulted in a marked increase in the amount of radiolabeled cAMP compared to that in unstimulated complexes. However, similar amounts of radiolabeled cAMP were found in oocytes derived from either stimulated or unstimulated complexes. Thus, we have not detected, using two methods of assay, that increasing the cAMP content of the cumulus cells results in any increase in the cAMP content of the oocyte. The apparent compartmentalization of cumulus cell cAMP elevated in response to either FSH or cholera toxin was not due to disruption of intercellular communication between the two cell types during the incubation; metabolic cooperativity was present between the two cell types and molecules of similar molecular weight and charge relative to that of cAMP were rapidly equilibrated between the two cell types. Testosterone potentiated the FSH/cholera toxin-induced transient inhibition of maturation of cumulus cell-enclosed oocytes. However, testosterone did not increase cAMP accumulation produced by either FSH or cholera toxin, decrease the rate of cAMP degradation, or promote movement of cumulus cell cAMP to the oocyte. Since cAMP elevated in response to FSH or cholera toxin appeared to be compartmentalized to cumulus cells and since neither FSH, cholera toxin, nor testosterone inhibited resumption of meiosis in denuded oocytes, it appears that the inhibitory effect promoted by FSH or cholera toxin is directly mediated by an agent other than cAMP, although cAMP generation is required for its action and that cumulus cells mediate the inhibition. These results are discussed in terms of a possible role of cAMP and steroids in regulating maturation in the mouse.  相似文献   

7.
We have partially purified a specific cyclin B2 kinase (cyk) from prophase oocytes ofXenopus laevisafter an ATP-γ-S activation step. Phosphopeptide analysis identified Ser53 as the majorin vitrophosphorylation site for cyk in cyclin B2. Using a synthetic peptide derived from cyclin B2 encompassing Ser53 (cyktide) as a substrate, cyk was shown to be activated during progesterone-induced maturation, with a peak of activity between 40 and 50% maturation. A sustained high cyk activity was observed in oscillating egg extracts. Microinjection of cyk-phosphorylated cyclin B2 into prophase oocytes accelerated progesterone-induced maturation by about 2 h, indicating that cyclin B2 is a relevant substrate for cyk and that the function of cyk is situated upstream of cdc2-cyclin B activation. Microinjection of cyk-phosphorylated cyktide or a combination of cyk and cyclin B1 into G2fibroblasts induced significant changes in cell morphology, reminiscent of a premature prophase-like phenotype. Similarly, addition of cyk-phosphorylated cyktide in cyclin B1-dependent interphase extracts resulted in histone H1 kinase activation.  相似文献   

8.
9.
Microinjection of monoclonal antibodies (lines 238, 172, and 259) directed against the ras gene product, p21, into Xenopus laevis oocytes accelerated progesterone-induced germinal vesicle breakdown. Antibody 238 had the greatest effect on the acceleration of progesterone-induced oocyte maturation, and this effect was correlated with in vitro inhibition of adenylate cyclase (EC 4.6.1.1) activity in a concentration-dependent manner. Inhibition of adenylate cyclase by antibody 238 was also measured in membranes prepared from oocytes pretreated with either cholera toxin or pertussis toxin. These results suggest a role for the ras gene product in the regulation of vertebrate cell adenylate cyclase activity.  相似文献   

10.
The kinetics of calcium, potassium, and sodium exchange by Xenopus laevis oocytes were monitored with radioactive tracers both before and during progesterone-induced maturation. The rate of 45Ca release steadily elevates for several hours during maturation, beginning within 40 min after progesterone exposure. About an hour later, the rate of 45Ca uptake also increases. The rate of 45Ca release begins to decline 1–2 hr before germinal vesicle breakdown (GVBD); the rate of calcium uptake declines only after GVBD. Similar changes are seen after maturation is induced with other steroids, but not when maturation is blocked by inhibitors. The passive potassium flux initially increases after progesterone treatment to be followed later by a decrease. These observed changes occur coincidently with those of 45Ca efflux. The passive sodium flux, on the other hand, steadily increases from the time of progesterone treatment until GVBD.  相似文献   

11.
Mixed and muscarinic cholinergic agonists (acetylcholine, carbamylcholine, methacholine, oxotremorine, and pilocarpine) accelerated in a dose-dependent manner the progesterone-induced maturation of Xenopus laevis oocytes. None of these agonists induced oocyte maturation in the absence of progesterone. The accelerating effect of cholinergic agonists was blocked in a dose-dependent manner by specific muscarinic antagonists (atropine and scopolamine) but not by specific nicotinic antagonists (d-tubocurarine and hexamethonium). The specific nicotinic agonist, dimethylphenylpiperazine, alone induced maturation in the absence of progesterone. The optimal promoting effect of acetylcholine was observed when oocytes were exposed to acetylcholine for 30 min, 5 min after the addition of progesterone, and was markedly better than when oocytes were exposed to acetylcholine throughout their incubation with progesterone. The effect of acetylcholine was observed in both follicle-enclosed and in defolliculated oocytes, indicating that follicular cells were not the target of the cholinergic drugs.  相似文献   

12.
l-leucine uptake into full-grown oocytes of Xenopus laevis is a saturable process which is Na+ dependent and presumably coupled to Na+ gradient. Our results indicate that progesterone (10?6 M) blocks abruptly, around the germinal vesicle breakdown, the saturable transport of l-leucine. p-Chloromercuribenzoate (10?4 M) induces maturation and after a short lag of time strongly inhibits l-leucine uptake. Cycloheximide prevents progesterone-induced maturation and permeability changes.  相似文献   

13.
Progesterone treatment of Xenopus oocytes in vitro causes progression through meiotic cell division. The role of altered intracellular levels of cAMP on the initiation of meiotic cell division has been studied. Basal levels of cAMP averaged 1.5 pmol in oocytes from eight females, and exposure to progesterone caused a rapid drop in cAMP to about 40 to 60% of basal. Half-maximal decreases occurred within 15 to 60 s, and cAMP returned to near basal values by 20 min after progesterone. Theophylline inhibition of progesterone-induced cell division was characterized by a small increase in basal levels of cAMP and a reduced drop in cAMP due to the hormone. Cholera toxin, an activator of adenylate cyclase, was found to be a potent inhibitor of progesterone-induced meiosis, with half-maximal inhibition at 8 times 10(-12) M. In addition, the purified A subunit of cholera toxin was an effective inhibitor of progesterone action when microinjected into oocytes, with half-maximal inhibition occurring at an approximate internal concentration of 1 X 10(-7) M. Cholera toxin alone increased cAMP levels by 20%, but upon addition of progesterone, the level increased transiently to 200% of basal, indicating that the inhibition was due to elevated levels of cAMP. The results support a model in which the initiation of meiotic cell division is regulated by cAMP and protein phosphorylation.  相似文献   

14.
Protein phosphorylation has been measured after injection of [32P]phosphate into oocytes of Xenopus laevis undergoing progesterone-induced meiotic maturation. As oocytes mature, there is a burst of nonyolk protein phosphorylation several hours after progesterone exposure and shortly before germinal vesicle breakdown (GVBD). This burst is not due to changes in the specific activity of the phosphate or ATP pool. Enucleated oocytes exposed to progesterone also experience the burst, indicating the cytoplasmic location of phosphoprotein formation. When an oocyte receives an injection of cytoplasm containing the maturation-promoting factor (MPF), a burst of protein phosphorylation occurs immediately, and GVBD occurs shortly thereafter, even in the presence of cycloheximide. Under a variety of conditions promoting or blocking maturation, oocytes which undergo GVBD are the only ones to have experienced the phosphorylation burst. The results suggest that the protein phosphorylation burst is a necessary step in the mechanism by which MPF promotes GVBD.  相似文献   

15.
Progesterone-induced oocyte maturation is thought to involve the inhibition of an oocyte adenylyl cyclase and reduction of intracellular cAMP. Our previous studies demonstrated that injection of inhibitors of G protein betagamma complex induces hormone-independent oocyte maturation. In contrast, over-expression of Xenopus Gbeta1 (xGbeta1), alone or together with bovine Ggamma2, elevates oocyte cAMP and inhibits progesterone-induced oocyte maturation. To further investigate the mechanism of Gbetagamma-induced oocyte maturation, we generated a mutant xGbeta1, substituting Asp-228 for Gly (D228G). An equivalent mutation in the mammalian Gbeta1 results in the loss of its ability to activate adenylyl cyclases. Indeed, co-injection of xGbeta1D228G with Ggamma2 failed to increase oocyte cAMP or inhibit progesterone-induced oocyte maturation. To directly demonstrate that oocytes contained a Gbetagamma-regulated adenylyl cyclase, we analyzed cAMP formation in vitro by using oocyte membrane preparations. Purified brain Gbetagamma complexes significantly activated membrane-bound adenylyl cyclase activities. Multiple adenylyl cyclase isoforms were identified in frog oocytes by PCR using degenerate primers corresponding to highly conserved catalytic amino acid sequences. Among these we identified a partial Xenopus adenylyl cyclase 7 (xAC7) that was 65% identical in amino acid sequence to human AC7. A dominant-negative mutant of xAC7 induced hormone-independent oocyte maturation and accelerated progesterone-induced oocyte maturation. Theses findings suggest that xAC7 is a major component of the G2 arrest mechanism in Xenopus oocytes.  相似文献   

16.
17.
Progesterone decreases the cAMP level of Xenopus oocytes which had been pretreated with cholera toxin (6 nM) and IBMX (1 mM); its action is obtained either by exposure to external hormone (1 micro M) or by microinjection of 50 nl of a 1 mM progesterone solution in paraffin oil. The cAMP content can be decreased in hormone-free oocytes by the calcium ionophore A 23187 or by microinjection of calcium-calmodulin. Conversely when endogenous calcium-calmodulin is inhibited by microinjection of either anticalmodulin antibodies or fluphenazine the cAMP content is increased. In all experimental conditions (high or low levels of intracellular calmodulin), progesterone is always capable of decreasing the oocyte cAMP concentration. Our results favor the view that the cAMP content is negatively controlled, probably via an inhibition of the adenylate cyclase activity, by two parallel mechanisms: the first involves calmodulin, the second results in an action of progesterone which does not require the intermediary formation of the calcium-calmodulin complex.  相似文献   

18.
The relationship between blood protein (vitellogenin) incorporation and nuclear maturation was studied in individual amphibian oocytes after in vitro exposure to desoxycorticosterone acetate (DOCA). Isolated Rana pipiens oocytes were incubated in vitro with radioactively labeled oocyte yolk precursor ([3H]vitellogenin) obtained from estrogenized Xenopus laevis. Incorporation of labeled vitellogenin into the oocytes continued over a 24-h period. Oocytes simultaneously exposed to DOCA and to labeled vitellogenin exhibited both inhibition of vitellogenin incorporation and stimulation of nuclear maturation and cortical changes. Inhibition of vitellogenin incorporation was observed after approximately 9 h of incubation and was correlated with the time of nuclear breakdown. Preincubation of oocytes in steroid for 9 h essentially terminated vitellogenin incorporation. Incorporation of vitellogenin occurred after removal of follicle cells from the oocyte by a short treatment with EDTA. These results demonstrate the macromolecular vitellogenin transport system remains operative in oocytes which can undergo nuclear maturation and that the steroid DOCA can affect its function. Evidence suggests that the mechanism of steroid inhibition is in part the result of inhibition of the micropinocytotic process in the oocyte cortex.  相似文献   

19.
We have developed an assay that can detect relative changes in the amount of a non-cAMP inhibitor of maturation present in cumulus cells (Eppig et al., 1983, Dev. Biol., 100:39-49). Using this assay in which accelerated maturation of a group of treated cumulus cell-oocyte complexes relative to untreated complexes indicates a decrease in the amount of inhibitor, results of the experiments described here suggest a possible relationship between elevation of cAMP levels and subsequent decreased amounts of a non-cAMP inhibitor. Mouse oocytes obtained from cumulus cell-oocyte complexes treated with luteinizing hormone (LH) resumed meiosis prior to oocytes obtained from untreated complexes; the degree of acceleration of maturation was dependent on LH concentration. A similar result was obtained with follicle-stimulating hormone (FSH). Correlated with LH- or FSH-acceleration of maturation was an LH- or FSH-induced elevation of cumulus cell cAMP levels. Inhibiting LH-induced elevation of cumulus cell cAMP levels inhibited LH-induced acceleration of maturation. An initial incubation of complexes in medium containing dibutyryl cAMP (dbcAMP) also promoted acceleration of maturation. In contrast, maturation of denuded oocytes was not altered by treatment with either LH, FSH, or dbcAMP. Complexes initially incubated in dbcAMP-containing medium still demonstrated acceleration of maturation after a subsequent 2 h incubation in dbcAMP-free medium. Relative to untreated complexes, none of these treatments disrupted intercellular communication between cumulus cells and the oocyte. Elevating follicle cAMP levels with cholera toxin induced maturation of follicle-enclosed oocytes when cumulus cell-oocyte coupling was still fully maintained. These results are interpreted to indicate that gonadotropin-mediated acceleration of maturation is via a cAMP-dependent reduction in the level of a maturation inhibitor present in granulosa/cumulus cells.  相似文献   

20.
A 95-kDa protein in Xenopus oocytes, Xp95, was shown to be phosphorylated from the first through the second meiotic divisions during progesterone-induced oocyte maturation. Xp95 was purified and cloned. The Xp95 protein sequence exhibited homology to mouse Rhophilin, budding yeast Bro1, and Aspergillus PalA, all of which are implicated in signal transduction. It also contained three conserved features including seven conserved tyrosines, a phosphorylation consensus sequence for the Src family of tyrosine kinases, and a proline-rich domain near the C terminus that contains multiple SH3 domain-binding motifs. We showed the following: 1) that both Xp95 isolated from Xenopus oocytes and a synthetic peptide containing the Src phosphorylation consensus sequence of Xp95 were phosphorylated in vitro by Src kinase and to a lesser extent by Fyn kinase; 2) Xp95 from Xenopus oocytes or eggs was recognized by an anti-phosphotyrosine antibody, and the relative abundance of tyrosine-phosphorylated Xp95 increased during oocyte maturation; and 3) microinjection of deregulated Src mRNA into Xenopus oocytes increased the abundance of tyrosine-phosphorylated Xp95. These results suggest that Xp95 is an element in a tyrosine kinase signaling pathway that may be involved in progesterone-induced Xenopus oocyte maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号