首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Grazing cattle require rumen degradable protein to meet the needs of the microbial population and rumen undegradable protein to meet the productive needs of the animal. The need for rumen degradable protein is about 130 g kg−1 of digestible organic matter. However, when low-quality forage is consumed, rate of passage is reduced, microbial growth rate is reduced and conversion efficiency of microbial growth is reduced. This probably lowers the rumen degradable protein requirement. Escape protein is necessary to meet cattle requirements for growth or lactation. Microbial protein is usually adequate for animals at or near maintenance. The protein in both cool-season and warm-season grasses is highly degraded. Therefore, growing cattle and lactating cows responded to supplemental escape protein. Knowledge of the rumen degradable and undegradable protein contents of grazed forages is essential to more precisely predict animal performance and the animal response to protein supplements.  相似文献   

2.
1. Choline, which is present in the diet of the sheep either in the non-esterified form or combined in phospholipids, is rapidly degraded in the rumen. The ultimate product formed from the N-methyl groups is methane. 2. Analysis of the non-esterified choline and the phosphatidylcholine in ruminal and abomasal digesta indicate that the phospholipid is the main vehicle for the passage of choline to the lower digestive tract. 3. The concentration of phosphatidylcholine in abomasal digesta is lower than that of ruminal digesta, which is in line with a selective retention of protozoa in the rumen as observed by others. 4. On defaunation of the rumen to remove ciliated protozoa the concentration of phosphatidylcholine in ruminal digesta falls markedly and becomes lower than that in abomasal digesta. 5. Calculation shows that the adult sheep obtains at most only about 20--25 mg of effective choline per day from its diet (0.002--0.0025% of dietary total dry-weight intake). This is some fifty times less than the minimum required to avoid pathological lesions and death in other species investigated (0.1%+ of dietary dry-weight intake). 6. Sheep liver can synthesize choline from [14C]ethanolamine both in vitro and in vivo, but the synthesis of choline per kg body weight is many times less than it is in the rat. 7. The intact sheep oxidizes an injected dose of [1,2-14C]choline to CO2 at a rate that is several times less than that observed for the rat. This could help to explain the apparent minimal requirement of sheep for dietary choline.  相似文献   

3.
Based on repeatedly reported extensive pantothenic acid disappearance in the rumen, the present study is aimed at examining if pantothenic acid is used for a more efficient ruminal fermentation and microbial growth in an artificial rumen (Rusitec). Three substrates differing in roughage/concentrate ratio were incubated with and without the addition of Ca-D-pantothenate. Pantothenic acid was extensively degraded without notably influencing fermentation, microbial protein synthesis and the status of other B-vitamins such as riboflavin, vitamin B6 and niacin. Therefore, pantothenic acid supplementation cannot be expected to contribute to microbial benefit for the ruminant animal.  相似文献   

4.
The synthesis of ciliary-membrane phospholipids and ciliary proteins was studied after deciliation in starving Tetrahymena thermophila cells. Deciliated cells regenerated the new ciliary membrane without any induced phospholipid synthesis. The constant cell volume found during the regrowth of the cilia suggests that renewal of ciliary membranes takes place by insertion of intracellular membrane material into the cell surface. In contrast with the absence of induced phospholipid synthesis during ciliary regeneration, the synthesis of ciliary proteins was found to be induced. This enhanced synthetic activity was made possible by an increased rate of intracellular protein degradation in regenerating cells. It was found that the extent of the induced synthesis strongly depends upon the growth conditions of the cells before starvation. Furthermore, it was shown that the degree of induced protein synthesis is greater for higher-molecular-weight ciliary proteins than for lower-molecular-weight species.  相似文献   

5.
An optical density of a whole bacterial suspension, prepared from sheep rumen contents, increased very rapidly when the cells were incubated in a glucose-containing medium. This is largely due to the accumulation of intracellular polysaccharide(s) and appears to proceed without cell multiplication. The increase has an apparent relationship with feeding conditions of animals and reflects the availability of easily fermentable sugars for bacteria in the rumen. The data suggest that the ruminal fermentation proceeds under extremely low level of easily fermentable sugars.  相似文献   

6.
The rates of engulfment and breakdown of starch grains and cellulose particles and of the rate of synthesis of amylopectin from cellulose by individual species of entodiniomorphid protozoa (grown in vivo and in vitro ) and incubated anaerobically in vitro were studied. Rates of starch uptake varied from 2.3 to 770 μg/mg protozoal protein/min; the lowest was found with Diploplastron affine and the highest with Entodinium spp. on initial incubation with starch grains. The rate of starch breakdown varied from 0.49 to 8.6 μg/mg protein/min; the rate was dependent on the initial starch concentration inside the protozoa. Eudiplodinium maggii engulfed cellulose particles more rapidly (2–7 times) than rice starch grains and digested the cellulose at rates of 10 to 16.5 μg/mg protein/min. In a mixture of starch grains and cellulose particles, it engulfed the latter at 1.35 to 25 times the rate of the former. Eudiplodinium maggii and Epidinium caudatum , but not Entodinium spp. or Dip. affine , synthesized an amylopectin-like material from cellulose at rates of 0.4 to 4.75 μg/mg protein/min. If these reactions occur in the rumen in vivo , up to 9 g of amylopectin could be synthesized from cellulose each day by the entodiniomorphid protozoa.  相似文献   

7.
Four rumen and proximal duodenum fistulated non-lactating Holstein cows were used to determine the effect of extrusion at 120 degrees C of whole horse beans (Vicia faba cv Talo) on in vitro nitrogen (N) solubility and in situ degradation of dry matter (DM) and crude protein (CP) in the rumen and intestine. Cows were fed a ration of 30% whole horse beans (WHB) and 70% Italian rye-grass hay. The degradation of DM and CP was estimated using nylon bags suspended in the rumen for 2, 4, 7, 16, 24 and 48 h; the effective ruminal degradability of DM and CP was evaluated assuming a ruminal outflow rate of 0.06/h. Bags incubated in the rumen for 16 h were introduced into the small intestine through the duodenal cannula and subsequently recovered in the feces. Extrusion of WHB reduced N-solubility in buffer solution (21.1 vs 74.9%). Processing diminished the effective rumen degradability of DM (74.6 vs 80.4%) and CP (70.2 vs 89.2%). Meanwhile, the amounts of DM and CP digested in the intestine increased: 9.6 vs 1.4% and 25.2 vs 3.0% respectively. Therefore, feeds containing extruded WHB increase the availability of dietary proteins in the intestine compared with diets containing raw WHB.  相似文献   

8.
Radiolabeled phosphate, acetate, and glycerol are incorporated into strain L-fibroblast phospholipids. The acetate and glycerol specifically label the fatty acid and glycerol moieties, respectively, of the phospholipids. To study the metabolic fate of the various moieties of phospholipids, cells incubated with the above radiolabeled compounds were transferred to unlabeled medium, and the rate at which phospholipid radioactivity per 10(6) cells decreased was determined. The rate of decrease expected on the basis of cell division alone was estimated either by monitoring increases in cell number, or by measuring the rate at which radiolabeled DNA per 10(6) cells decreased. Both phospholipid phosphorus and glycerol are lost at a rate greater than can be accounted for by cell division alone. By contrast, nearly all phospholipid acyl chains were retained by the cell to the same extent as radiolabeled DNA. While presence of nonradioactive glycerol in the medium increased the rate at which glycerol was lost from phospholipid, the addition of exogenous fatty acid was without effect on the retention of phospholipid acyl groups. The acyl-glycerol bond of phosphatidylcholine is metabolically more labile than that of phosphatidylethanolamine. Together the data suggest that although L-fibroblast phospholipids undergo deacylation-reacylation reactions, the acyl chains do not equilibrate with either extracellular or intracellular pools of unesterified fatty acid.  相似文献   

9.
The effect of aminophylline on the lipid synthesis of Microsporum gypseum has been examined. A decreased incorporation of [14C]acetate into lipids was observed when the cells were incubated for 1 h with aminophylline which was reflected in all the individual lipid fractions. However, cells grown with aminophylline in the growth medium exhibited increased levels of total phospholipids, which was probably due to a rise in intracellular cAMP as these cells exhibited 4-fold increased levels of cAMP. Decreased activity of phosphodiesterase by aminophylline accounts for the increased cAMP levels. Increased phospholipid content in aminophylline grown cells was further supported by the increased incorporation of [14C]acetate into phospholipids as well as increased activities of phospholipid biosynthetic enzymes in comparison to non-supplemented cells.  相似文献   

10.
Despite their major contribution to the energy supply of ruminants, the production of volatile fatty acids (VFA) in the rumen is still poorly predicted by rumen models. We have developed an empirical approach, based on the interpretation of large bibliographic databases gathering published in vivo measurements of ruminal VFA production rate (PR), rates of duodenal and faecal digestion and molar percentages of VFA in the rumen. These databases, covering a wide range of intake levels and dietary composition, were studied by meta-analysis using within-experiment models. We established models to quantify response laws of total VFA-PR and individual VFA molar percentages in the rumen to variations in intake level and dietary composition. The rumen fermentable organic matter (RfOM) intake, estimated from detailed knowledge of the chemical composition of diets according to INRA Feed Tables, appears as an accurate explanatory variable of measured total VFA-PR, with an average increment of 8.03 ± 0.64 mol total VFA/kg RfOM intake. Similar results were obtained when total VFA-PR was estimated from measured apparent RfOM (total VFA-PR/RfOM averaging 8.3 ± 1.2 mol/kg). The VFA molar percentages were related to dry matter intake and measured digestible organic matter (OM), digestible NDF and rumen starch digestibility, with root mean square error of 1.23, 1.45, 0.88 and 0.41 mol/100 mol total VFA for acetate, propionate, butyrate and minor VFA, respectively, with no effect of pH on the residuals. Stoichiometry coefficients were calculated from the slopes of the relationships between individual VFA production (estimated from measured apparent RfOM and individual VFA molar percentages) and measured fermented fractions. Coefficients averaged, respectively, 66, 17, 14 and 3 mol/100 mol for NDF; 41, 44, 12 and 4 mol/100 mol for starch; and 46, 35, 13 and 6 mol/100 mol for crude protein. Their use to predict VFA molar percentages appear relevant for most dietary conditions, that is, when the digested NDF/digested OM ratio exceeded 0.12. This study provides a quantitative review on VFA yield in the rumen. It contributes to the development of feed evaluation systems based on nutrient fluxes.  相似文献   

11.
Method for Measuring Microbial Growth in Rumen Content   总被引:4,自引:4,他引:0       下载免费PDF全文
Radioactive sodium sulfide was used to label the sulfide pool of rumen contents in vitro. Microbial protein synthesis was calculated from the size and rate of dilution of label in the sulfide pool, and from the radioactivity incorporated into protein together with a conversion factor specifying the nitrogen-sulfur ratio determined for microbial protein. The microbial cell yield, calculated on the basis of the adenosine triphosphate (ATP) available from fermentation, was 13 to 14 g (dry weight) per mole of ATP, which is in good agreement with the values obtained for pure cultures of bacteria. Calculation of microbial protein yield per kilogram of ration agreed fairly well with previous estimates for similar rations.  相似文献   

12.
The experiment investigated the effects of the dietary inclusion of 200 g of the natural zeolite, clinoptilolite on the blood serum concentrations of aluminium (Al) and inorganic phosphorus (P) as well as on the ruminal pH and the ruminal concentrations of Al and P and of certain volatile fatty acids. Sixteen Holstein cows with a rumen fistula were randomly assigned to one of two groups. Group A cows (n = 8) were fed the basal ration supplemented with 200 g of clinoptilolite per day, and group B cows (n = 8) were fed the basal ration and served as controls. Blood and rumen fluid samples were collected at the same day of each week and at the same time (5 h after morning feeding) for 12 weeks. Clinoptilolite supplementation had no significant effect on ruminal and blood serum concentrations of Al and P. However, clinoptilolite significantly increased ruminal pH and acetate, and decreased ruminal propionate and valerate.  相似文献   

13.
The synthesis of cellular lipids of Neurospora crassa was measured during growth on low (2% sucrose)- and high (15% glucose)-carbohydrate supplementation. The amount of lipid per dry weight of cells does not change during the germination and early logarithmic growth periods, but the percentage of phospholipid in the lipid does increase, reaching a maximal value of 90% at 4 to 5 h after inoculation, at which time the phospholipid content of the cells is approximately 60 mumol/g (dry weight). The content of the anionic phospholipids, as a percentage of the lipid fraction, is relatively constant during the growth period, but the contents of the zwitterionic phospholipids phosphatidylcholine and phosphatidylethanolamine change in a reciprocal fashion. During the first 8 h of growth, phosphatidylcholine falls from 53% of the phospholipid to 43%, whereas phosphatidylethanolamine rises from 29 to 38%. The total of these two phospholipids is approximately 83% during the growth period studied. The synthesis of cellular phospholipids, measured either by [32P]H3PO4 or [14C]glucose incorporation, reached maximal levels between 3 and 5 h of growth. The effect of the high-carbohydrate supplement on cellular lipids was minimal. Inclusion of 15% glucose decreased the labeling of phospholipid by [32P]H3PO4, but did not affect lipid composition. This observation is in contrast to the effects of high glucose on mitochondrial phospholipid synthesis.  相似文献   

14.
The ruminal degradation of RNA in rye grass (Lolium perenne) was studied using the bag method. A non-lactating cow (BW 550 kg) fitted with a rumen cannula was used and fed twice daily at maintenance level with a chopped grass hay-based ration containing 30% ground barley. Rye grass, labelled during growth by fertilization with 15N2-urea (9.5 atom% 15N, 20 g N/m2), was cut at seven stages of growth and maturity and freeze-dried. RNA-N represented 6 to 17% of total N. Labelled grass samples (milled to 5.0 mm screen, 5.0+/-0.1 g DM) were incubated in polyester bags (100 x 200 mm, pore size 50 microm) in the rumen for periods of 1, 3, 6, 9, 12, 24, and 48 h. Data of N and RNA disappearances from the bags were fitted to an exponential equation to estimate parameters of degradation. The effective degradability of RNA in the rumen averaged 90+/-4%, for N it was 11% units lower (P < 0.001). Degradability of RNA was correlated to that of N (R2 = 0.92). Degradability of RNA (R2 = 0.96) and N (R2 = 0.93) decreased with increasing fibre content of grass. Increasing the fibre content by 1% diminished the degradability of RNA and N by 1.1% units and 2.4% units, respectively (P < 0.001). Assuming a microbial protein synthesis in the rumen of 150 g/kg DOM, a N: RNA ratio of 1:1.35 in rumen microbes and a rumen outflow rate of 0.06 h(-1), a model calculation indicates that about 9 to 19% of duodenal RNA are of dietary origin in animals fed grass. This should be taken into account for the calculation of microbial N on the basis of RNA as marker.  相似文献   

15.
Microbes in ruminal contents incorporated (14)C into cells when they were incubated in vitro in the presence of [(14)C]carboxyl-labeled indole-3-acetic acid (IAA). Most of the cellular (14)C was found to be in tryptophan from the protein fractions of the cells. Pure cultures of several important ruminal species did not incorporate labeled IAA, but all four strains of Ruminococcus albus tested utilized IAA for tryptophan synthesis. R. albus did not incorporate (14)C into tryptophan during growth in medium containing either labeled serine or labeled shikimic acid. The mechanism of tryptophan biosynthesis from IAA is not known but appears to be different from any described biosynthetic pathway. We propose that a reductive carboxylation, perhaps involving a low-potential electron donor such as ferredoxin, is involved.  相似文献   

16.
The potassium sensitive magnesium absorption through the rumen wall may be influenced by additional dietary properties, such as diet type, forage type or forage to concentrate ratio. These properties are likely associated to rumen passage kinetics modified by dietary fibre content. The study aimed to assess the effects of rumen passage kinetics on apparent Mg absorption and retention in lactating dairy cows fed modified levels of fibre. Six lactating Red-Holstein and Holstein cows, including four fitted with ruminal cannulas were randomly assigned to a 3 × 3 cross-over design. The experimental diets consisted of early harvested low NDF (341 g NDF/kg DM) and late harvested high NDF (572 g NDF/kg DM) grass silage (80% DM) and of concentrates (20% of DM). As the low-fibre diet was excessive in protein, a third high-fibre diet was formulated to be balanced in digestible protein with the low-fibre diet to avoid any eventual confounding effects of NDF and protein excess. All diets were formulated to contain iso-Ca, -P, -Mg, -K and -Na. Passage kinetics of solid and liquid phase of rumen digesta were evaluated using ruminal marker disappearance profiles. Cows fed the low-fibre diet had compared to the other diets, an up to 40% lower solid and 26% lower liquid phase volume of rumen digesta and a 10% numerically higher fractional rumen liquid passage rate. Rumen pH lost 0.6 units and Mg concentration in the rumen liquid phase tripled when cows were fed the low-fibre diet. Faecal Mg excretion was up to 14% higher in cows fed the low-fibre diet and Mg absorbability was 12% compared to up to 19% in other diets. Urinary Mg excretion in cows fed the low-fibre diet was half of the ones in the other treatments, but Mg retention was not affected. Dietary protein excess neither affected rumen passage kinetics nor Mg absorption and retention. Absorption of Mg was correlated with rumen liquid volume which both decreased with decreasing daily NDF intake (NDFi, 11.8 ± 2.4 l/kg NDFi). Consequently, daily Mg absorption decreased by 1.32 ± 0.28 g/kg decreasing NDFi. To conclude, in addition to the known antagonistic effect of dietary K, the present data indicate that Mg absorption was dependent from NDFi which modified rumen liquid volume, but was independent of dietary protein excess likely associated to low NDF herbages.  相似文献   

17.
Atropine, a modulator of cAMP has been used to examine the relationship between phospholipids and intracellular levels of cAMP in Microsporum gypseum. A decreased phospholipid content was observed in atropine grown cells as a result of reduced levels of intracellular cAMP. This decline was caused by the inhibitory effect of atropine on adenylate cyclase. Lowered phospholipid content was supported by decreased [14C]acetate incorporation as well as reduced activities of key enzymes of phospholipid biosynthesis. In vitro supplementation of atropine in control cells also caused inhibition in lipid synthesis indicating similar effects of atropine and its metabolites. These results in conjunction with our previous report, in which enhanced levels of cAMP resulted in increased phospholipid synthesis, suggest a direct correlation between phospholipid biosynthesis and intracellular levels of cAMP in M. gypseum.  相似文献   

18.
Stimulation of the exocrine pancreas is associated with marked changes in pancreatic phospholipid metabolism. It has been previously established that de novo synthesis of phospholipids constitutes part of this "phospholipid effect". This study has demonstrated that in vitro stimulation of the rat pancreas utilising bethanecol and pancreozymin results in increased incorporation of labelled glucose into phosphatidyl inositol and, to a lesser extent, other phospholipids, suggesting increased de novo synthesis of these compounds. However, secretin which is believed to act via a different intracellular pathway, did not exert such an effect. The relevance of this animal model is indicated by the demonstration of increased incorporation of labelled glucose into phospholipids of human pancreas stimulated in vitro by bethanecol or sincalide (the active carboxy terminal octapeptide of pancreozymin).  相似文献   

19.
Phospholipid Synthesis in Sindbis Virus-Infected Cells   总被引:5,自引:5,他引:0       下载免费PDF全文
We investigated the metabolic requirements for the decrease in phospholipid synthesis previously observed by Pfefferkorn and Hunter in primary cultures of chick embryo fibroblasts infected with Sindbis virus. The incorporation of (32)PO(4) into all classes of phospholipids was found to decline at the same rate and to the same extent; thus, incorporation of (14)C-choline into acid-precipitable form provided a convenient measure of phospholipid synthesis that was used in subsequent experiments. Experiments with temperature-sensitive mutants suggested that some viral ribonucleic acid (RNA) synthesis was essential for the inhibition of choline incorporation, but that functional viral structural proteins were not required. The reduction in phospholipid synthesis was probably a secondary effect of infection resulting from viral inhibition of the cellular RNA and protein synthesis. All three inhibitory effects required about the same amount of viral RNA synthesis; the inhibition of host RNA and protein synthesis began sooner than the decline in phospholipid synthesis; and both actinomycin D and cycloheximide inhibited (14)C-choline incorporation in uninfected cells. In contrast, incorporation of (14)C-choline into BHK-21 cells was not decreased by 10 hr of exposure to actinomycin D and declined only slowly after cycloheximide treatment. Growth of Sindbis virus in BHK cells did not cause the marked stimulation of phospholipid synthesis seen in picornavirus infections of other mammalian cells; however, inhibition was seen only late in infection.  相似文献   

20.
Bieleski RL 《Plant physiology》1968,43(8):1309-1316
When Spirodela plants are transferred to a phosphate-deficient medium, growth slows down immediately, and ceases after 14 days. During this time, inorganic phosphate content falls from 30 to 0.7 μmoles/g fresh weight of tissue, phosphate ester content from 3.5 to 0.6 μmoles/g, phospholipid content from 3.5 to 1.2 μmoles/g, and residual phosphate (mainly RNA) content from 7.5 to 2.0 μmoles/g. Relative proportions of the various phosphate esters, and relative proportions of the various phospholipids, are not markedly affected by phosphate deficiency. Turnover rates of phosphate esters are somewhat higher in phosphate-deficient tissue. In control tissue, inorganic phosphate is present in 2 pools; a metabolic (12%) and a non-metabolic pool (88%). In phosphate-deficient tissues, most of the inorganic phosphate (>90%) is in the metabolic pool. Non-metabolic phosphate is presumably stored in the vacuole, and is not readily accessible to the tissue, so that growth normally occurs at the expense of external phosphate. During deficiency, growth is limited by the rate at which phosphate can be transported through the tonoplast and tissue to the growing point. Growth ceases when the supply of non-metabolic phosphate is exhausted. Metabolic phosphate is presumably located in the cytoplasm: it can not be used for growth. Nor can the plant respond to deficiency by making some phosphorus compounds at the expense of others. In this respect, phosphorus deficiency and nitrogen deficiency are dissimilar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号