首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Menadione-catalyzed H2O2 production by viable cells is proportional to viable cell number. The correlations between the viable cell number and the concentration of H2O2 produced are determined with the rapid chemiluminescent assay (S. Yamashoji, T. Ikeda, and K. Yamashoji, 1989, Anal. Biochem. 181, 149-152). This chemiluminescent assay of viable cells requires only 10 min and is much faster than NR (neutral red) inclusion and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assays, which require 3-5 h. When viable cells are incubated with antitumor drugs, detergents, mycotoxins, and glycoalkaloids for 24-48 h, a decrease in menadione-catalyzed H2O2 production in a dose- or incubation time-dependent manner is observed. In general, the 50% inhibition concentration determined by the chemiluminescent assay is lower than that determined by NR inclusion and MTT reduction assays, and the order of relative cytotoxic effects of agents is the same among these assays. Furthermore, clear cytotoxic effects are observed by the chemiluminescent assay after 1 h exposure of trypsinized cells to toxic compounds. Therefore, the chemiluminescent assay is expected to be more useful for the rapid detection of cytotoxic compounds than NR inclusion and MTT reduction assays.  相似文献   

2.
Chinese hamster ovary cells used for pharmaceutical protein production express noninfectious retrovirus-like particles. To assure the safety of pharmaceutical proteins, validation of the ability of manufacturing processes to clear retrovirus-like particles is required for product registration. Xenotropic murine leukemia virus (X-MuLV) is often used as a model virus for clearance studies. Traditionally, cell-based infectivity assay has been the standard virus quantification method. In this article, a real time quantitative PCR (Q-PCR) method has been developed for X-MuLV detection/quantification. This method provides accurate and reproducible quantification of X-MuLV particle RNA (pRNA) over a linear dynamic range of at least 100,000-fold with a quantification limit of approximately 1.5 pRNA copies microL(-1). It is about 100-fold more sensitive than the cell-based infectivity assay. High concentrations of protein and cellular DNA present in test samples have been demonstrated to have no impact on X-MuLV quantification. The X-MuLV clearance during chromatography and filtration procedures determined by this method is highly comparable with that determined by the cell-based infectivity assay. X-MuLV clearance measured by both methods showed that anion exchange chromatography (QSFF) and DV50 viral filtration are robust retroviral removal steps. In addition, combination of the two methods was able to distinguish the viral removal from inactivation by the Protein A chromatography, and fully recognize the viral clearance capacity of this step. This new method offers significant advantages over cell-based infectivity assays. It could be used to substitute cell-based infectivity assays for process validation of viral removal procedures, but not inactivation steps. Its availability should greatly facilitate and reduce the cost of viral clearance evaluations for new biologic product development.  相似文献   

3.
4.
5.
Antibody-mediated neutralization of human immunodeficiency virus type 1 (HIV-1) was evaluated with primary isolates and sera from infected individuals, using human peripheral blood mononuclear cells (PBMC) activated with phytohemagglutinin 1 day after virus inoculation (resting-cell assay) or 2 days prior to virus inoculation (blast assay). Assays were performed exclusively with syncytium-inducing (SI) isolates since non-SI isolates replicated poorly or not at all in the resting-cell assay. Ninety percent neutralization was difficult to achieve in both assays for most virus-serum combinations tested. Of particular note, virus replication in the absence of antibody was delayed 2 to 3 days in the resting-cell assay. At least part of this delay was due to a decrease in virus infectivity; the 50% tissue culture infectious dose of primary isolates was 25 to 30 times lower in the resting-cell assay than in the PBMC blast assay. When a broadly neutralizing serum and the same dilution of virus were used in both assays, neutralization was greater in the resting-cell assay than in the blast assay on day 7, but neutralization was equal in both assays when measurements were made 3 days sooner in the PBMC blast assay. Both assays had the same level of detection on day 7 when the amount of virus mixed with antibody and added to cells was standardized according to infectivity for the respective target cells. Thus, when the infectious dose was adjusted, the two assays were equally sensitive for detecting antibody-mediated neutralization of primary isolates of HIV-1. These results indicate that primary isolates of HIV-1 are difficult to neutralize in both assays and that the detection of neutralization is not affected by the initial activation state of PBMC.  相似文献   

6.
The quantitative PCR infectivity assay is a combination of virus propagation and quantitative PCR. Previously [Schalk JAC, van den Elzen C, Ovelgonne H, Baas C, Jongen PMJM. Estimation of the number of infectious measles viruses in live virus vaccines using quantitative real-time PCR. J Virol Methods 2004;117:179-87.], we used this assay to estimate the titer of infectious measles virus in trivalent, live, measles, mumps, rubella vaccines (MMR). Here we describe the further improvement and development of the assay for simultaneous potency estimation of measles, mumps and rubella viruses. The potency of measles and mumps virus is estimated within one assay after 1 day of cell culture. The potency of rubella virus is estimated in a separate assay after 2 days of cell culture. Compared to conventional CCID50 and plaque assays, the quantitative PCR infectivity assay has the advantage in being fast because the assay is not dependent on the formation of cytopathic effect. Furthermore assay design is simplified: serological neutralization can be omitted because PCR is virus-specific and, under the conditions used, the individual components of trivalent measles, mumps, rubella vaccines do not interfere with each other. The assay was validated and compared to the performance of a plaque assay.  相似文献   

7.
The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a widely accepted cytotoxicity assay which can produce inaccurate results due to possible interference with the antioxidant property of anthocyanins. Alternative methods to the MTT assay, such as BrdU (DNA-based) and CellTiter-Glo (ATP-based) assays were evaluated to assess anthocyanin cytotoxicity, derived from blackberry in LNCaP, MCF-7 and MDA-MB-453 cell lines. The standard cell counting method was the reference assay. Greater correlation of cell viability values following anthocyanin exposure was obtained from multiple cell lines with the alternative assays when compared with cell counting. MTT and cell counting results were not always correlated, albeit this was a function of cell type. In particular, poor correlations between cell counting and MTT procedures used to assess cytotoxicity of anthocyanins were observed in the MDA-MB-453 cell lines. Comparison of cytotoxicity derived from alternative assays and the MTT assays with the cell counting method was dependent on the assay procedure and the cell type. The LC(50) of blackberry crude extract ranged from 0.4 to 9.4 mg/mL between assays and across all cell lines, whereas a semi-purified anthocyanin extract was not cytotoxic. Cytotoxicity evaluation of polyphenolic-rich extracts using BrdU and CellTiter-Glo assays as alternatives to the MTT method is recommended.  相似文献   

8.
A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation.  相似文献   

9.
The role of NR4A1 in apoptosis is controversial. Pancreatic β-cells often face endoplasmic reticulum (ER) stress under adverse conditions such as high free fatty acid (FFA) concentrations and sustained hyperglycemia. Severe ER stress results in β-cell apoptosis. The aim of this study was to analyze the role of NR4A1 in ER stress-mediated β-cell apoptosis and to characterize the related mechanisms. We confirmed that upon treatment with the ER stress inducers thapsigargin (TG) or palmitic acid (PA), the mRNA and protein levels of NR4A1 rapidly increased in both MIN6 cells and mouse islets. NR4A1 overexpression in MIN6 cells conferred resistance to cell loss induced by TG or PA, as assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and TUNEL assays indicated that NR4A1 overexpression also protected against ER stress-induced apoptosis. This conclusion was further confirmed by experiments exploiting siRNA to knockdown NR4A1 expression in MIN6 cells or exploiting NR4A1 knock-out mice. NR4A1 overexpression in MIN6 cells reduced C/EBP homologous protein (CHOP) expression and Caspase3 activation induced by TG or PA. NR4A1 overexpression in MIN6 cells or mouse islets resulted in Survivin up-regulation. A critical regulatory element was identified in Survivin promoter (−1872 bp to −1866 bp) with a putative NR4A1 binding site; ChIP assays demonstrated that NR4A1 physically associates with the Survivin promoter. In conclusion, NR4A1 protects pancreatic β-cells against ER stress-mediated apoptosis by up-regulating Survivin expression and down-regulating CHOP expression, which we termed as “positive and negative regulation.”  相似文献   

10.
One of the problem in the selection of the most effective antiviral preparations with a broad spectrum of antiviral protective activity, is the "continuity" of assays of different level of complexity so, that the most effective antiviral therapeutic, selected by in vitro assays would be the most effective in vivo. Comparative study of the efficacy of the influenza virus inhibitor in the assays of inhibition of virus binding with fetuin, inhibition of infectious focus forming units in MDCK cells, inhibition of virus yield in infected MDCK cells, and inhibition of influenza virus infectivity in mice infected by viral aerosol are presented. The value of 50% inhibiting concentration IC50 for the pare "influenza virus strain A/NIB/23/89-MA-inhibitor tetra-Aca6-6'SLN" corresponded to 6-10 microM and was invariant for three different tests--in vitro assay of inhibition of virus binding with fetuin, inhibition of yield in infected MDCK cell culture, and inhibition of virus infectivity in mice, but not for the assay of inhibition of infectious focus forming units in cell culture.  相似文献   

11.
An enzyme-linked immunosorbent assay (ELISA) system for the rapid detection of the plant rhabdovirus, lettuce necrotic yellows virus (LNYV) in plant hosts and individual aphid vector is described. The method has been shown to be reliable and sensitive, and to have a number of advantages over the conventional methods of detecting LNYV in plants and insects by infectivity tests.  相似文献   

12.
L Shi  L A Norling  A S Lau  S Krejci  A J Laney  Y Xu 《Biologicals》1999,27(3):253-262
Continuous cell lines used for pharmaceutical protein manufacturing have the potential to be contaminated by viruses. To ensure the safety of pharmaceutical proteins derived from continuous cell lines, validation of the ability of the manufacturing process to clear potential contaminating viruses is required for product registration. In this paper, a real time quantitative PCR method has been applied to the evaluation of simian virus 40 (SV40) removal during chromatography and filtration procedures. This method takes advantage of the 5'-3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 sequence detection system of PE Applied Biosystems for automated SV40 DNA quantification through a dual-labeled fluorogenic probe. This method provides accurate and reproducible quantification of SV40 DNA. The SV40 clearance during chromatography and filtration procedures determined by this method is highly comparable with that determined by the cell-based infectivity assay. This method offers significant advantages over cell-based infectivity assays, such as higher sensitivity, greater reliability, higher sample throughput and lower cost. This method can be potentially used to evaluate the clearance of all model viruses during chromatography and filtration procedures. This method can be used to substitute cell-based infectivity assays for process validation of viral removal procedures and the availability of this method should greatly facilitate and reduce the cost of viral clearance evaluations required for new biologic product development.  相似文献   

13.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

14.
15.
A New Non-radioactive Method for IL-2 Bioassay   总被引:3,自引:0,他引:3  
An oxidation-reduction (redox) indicator, alamarBlue, was used to measure the bioactivity of interleukin 2 (IL-2). This assay system has several advantages over other bioassays for measuring IL-2. It is a nonradioactive method unlike the conventional tritium-labeled thymidine ([3H]TdR) incorporation assay. The alamarBlue assay is also easier to use than other colorimetric methods, such as the MTT assay, because the alamarBlue assay does not depend on the extraction of insoluble formazan salt, which is time-consuming, error-prone, and cumbersome. Due to its solubility in culture medium and its nontoxicity to cells, alamarBlue provides an easy method to monitor cellular growth using either a fluorescence- or an absor-bance-based instrument. The alamarBlue assay is not sample-destructive, unlike the thymidine incorporation and MTT methods. This adds another advantage to the alamarBlue method as the measurement of cellular growth by sample-destructive methods requires as many tubes as time points whereas the alamarBlue method requires only one tube for the entire growth period. In this study, alamarBlue was used to measure the proliferation of the IL-2-dependent cytotoxic T cell line, CTLL-2. The colorimetric change of alamarBlue at 570 nm compared to the reference wavelength, 600 nm, was proportional to the number of viable cells. The sensitivity of the IL-2 assay using alamarBlue was comparable to that of the [3H]thymidine incorporation method. These results demonstrate that the alamarBlue assay is valid for the IL-2 bioassay and that alamarBlue can replace the [3H]thymidine employed in the conventional proliferation assays.  相似文献   

16.
Deletional analysis within the long terminal repeat (LTR) of Moloney murine leukemia virus (M-MuLV) was performed. By molecular cloning, deletions were made in the vicinity of the XbaI site at -150 base pairs (bp) in the U3 region, between the tandemly repeated enhancers and the TATA box. The effects of the deletions on LTR function were measured in two ways. First, deleted LTRs were fused to the bacterial chloramphenicol acetyltransferase gene and used in transient expression assays. Second, infectious M-MuLVs were generated by transfection of M-MuLV proviruses containing the deleted LTRs, and the relative infectivity of the mutant viruses was assessed by XC-syncytial assay. Most of the deleted LTRs examined showed relatively high promoter activity in the transient chloramphenicol acetyltransferase assays, with values ranging from 20 to 50% of the wild-type M-MuLV LTR. Thus, the sequences between the enhancers and the TATA box were not absolutely required for transient expression. However, infectivity of viruses carrying the same deleted LTRs showed more pronounced effects. Deletion of sequences from -195 to -174 bp reduced infectivity 20- to 100-fold. Deletion of sequences within the region from -174 to -122 bp did not affect infectivity, indicating that this region is dispensable. On the other hand, deletion of sequences from -150 to -40 bp reduced infectivity from 5 to 6 logs, although the magnitude of the reduction partly may have reflected threshold envelope protein requirements for positive XC assays. The reduced infectivity did not appear to result from a failure of proviral DNA synthesis or integration by the mutant. Thus, the infectivity measurements identified three functional domains in the region between the enhancers and the TATA box.  相似文献   

17.
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) is widely used for cell viability and cytotoxicity assays, but cell biological effects of MTT itself have not been investigated. In this paper we show that MTT induces a morphological change in an intracellular membranous compartment labeled with anti-Rab5 antibody, dissociation of early endosomal auto-antigen (EEA1) from the membrane fraction, and phosphorylation of Akt probably through a phosphatidylinositol-3-OH kinase [PI(3)K] pathway in cultured rat astrocytes. These findings suggest that MTT affects cellular functions and conditions to some extent, and such effects of MTT may cause some discrepancies of measurement of cell viability using MTT assay and other assays. That is, the effects of MTT on cells could influence the results of cell viability assay. Moreover, MTT or other tetrazolium salts could be used as interesting activators of Akt to investigate the mechanism by which Akt or PI(3)K is activated.  相似文献   

18.
Adenovirus is a focus of the water treatment community because of its resistance to standard, monochromatic low-pressure (LP) UV irradiation. Recent research has shown that polychromatic, medium-pressure (MP) UV sources are more effective than LP UV for disinfection of adenovirus when viral inactivation is measured using cell culture infectivity assays; however, UV-induced DNA damage may be repaired during cell culture infectivity assays, and this confounds interpretation of these results. Objectives of this work were to study adenoviral response to both LP and MP UV using (i) standard cell culture infectivity assays and (ii) a PCR assay to directly assess damage to the adenoviral genome without introducing the virus into cell culture. LP and MP UV dose response curves were determined for (i) log inactivation of the virus in cell culture and (ii) UV-induced lesions per kilobase of viral DNA as measured by the PCR assay. Results show that LP and MP UV are equally effective at damaging the genome; MP UV is more effective at inactivating adenovirus in cell culture. This work suggests that the higher disinfection efficacy of MP UV cannot be attributed to a difference in DNA damage induction. These results enhance our understanding of the fundamental mechanisms of UV disinfection of viruses—especially double-stranded DNA viruses that infect humans—and improve the ability of the water treatment community to protect public health.  相似文献   

19.

Background

Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays.

Methods

Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression.

Findings

PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent.

Conclusions

The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation.  相似文献   

20.
Evaluation of chemicals cytotoxicity plays fundamental role in many in vitro investigations. The way of assessment of cytotoxicity depend on aim of study, characteristic of used cells and mode of action of investigated chemicals. The principal aspect of these investigations is validation of used method. In this paper validation of three different cytotoxicity assays is presented: total cell number measurement (LK), microplate assay measured mitochondrial dehydrogenase activity (MTT) and colorimetric assay measured ability of live cell to uptake neutral red (NR). The investigation was performed on different cells (MRC5, CV1 i Chang Liver) with DMSO as reference agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号