首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of different protecting groups were compared with respect to their usefulness for protection of 2'-hydroxyl functions during synthesis of oligoribonucleotides using the H-phosphonate approach. The comparison was between the t-butyldimethylsilyl (t-BDMSi), the o-chlorobenzoyl (o-CIBz), the tetrahydropyranyl (THP), the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp), the 1-(2-chloro-4-methylphenyl)-4-methoxypiperidin-4-yl (Ctmp), and the 1-(2-chloroethoxy)ethyl (Cee) protecting groups. All these groups were tested in synthesis of dodecamers, (Up)11U and (Up)11A, using 5'-O-(4-monomethoxytrityl) or (4,4'-dimethoxytrityl) uridine H-phosphonate building blocks carrying the respective 2'-protection. The performance of the t-BDMSi and o-CIBz derivatives were also compared in synthesis of (Up)19U. The most successful syntheses were clearly those where the t-butyldimethylsilyl group was used. The o-chlorobenzoyl group also gave satisfactory results but seems somewhat limited with respect to synthesis of longer oligomers. The results with all tested acetal derivatives (Fpmp, Ctmp, Cee, THP) were much less successful due to some accompanying cleavage of internucleotidic H-phosphonate functions during removal of 5'-O-protection (DMT).  相似文献   

2.
Equimolar addition of oligoribonucleotides with T4 RNA ligase.   总被引:16,自引:15,他引:1       下载免费PDF全文
T4 induced RNA ligase will join equimolar concentrations of two oligoribonucleotides, (Ap)3C and p(Up) 5, to form a single product, (Ap)3Cp(Up) 5, in high yield. The presence of the 3' phosphate on p(Up)5 prevents the oligomer from adding to itself. The pH optimum of the reaction is about 7.5, but less of the undesirable adenylated intermediate, App(Up) 5, forms at pH 8.2. The reaction rate is a linear function of oligomer concentration from 3 micronM to 0.6 mM. The data suggest that T4 RNA ligase will be a useful enzyme for the synthesis of oligomers of defined sequence.  相似文献   

3.
The unique structure of 5' mRNA cap from Trypanosomatids is the most modified cap found in nature. Here we present the synthesis of cap-4 (m(7)Gpppm(3)(6,6,2')Apm(2')Apm(2')Cpm(2)(3,2')Up) on a disulfide-tethered solid support. This approach allows obtaining cap-4 more efficiently then previously described. Moreover such modified resin could be a useful tool for affinity purification of Leishmania proteins interacting with cap-4. For the final step of synthesis, namely coupling of phosphorylated tetranucleotide with activated 7-methylguanosine 5'-diphosphate two systems were compared. Surprisingly, the coupling in water with Mn(2+) as a catalyst, gave better results than usually more effective coupling in DMF with ZnCl(2).  相似文献   

4.
5.
The internucleotide linkage of uridylyl-(3'-->5')-uridine (r[UpU]) does not undergo detectable hydrolytic cleavage or migration in ca. 24 hr in 0.01 mol dm-3 hydrochloric acid (pH 2.0) at 25 degrees C. However, unlike r[UpU] and previously examined relatively high molecular weight oligoribonucleotides, oligouridylic acids are very sensitive to aqueous acid under the latter conditions (pH 2.0, 25 degrees C). Thus when the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp) group is used to protect the 2'-hydroxy functions in the synthesis of r[(Up)9U] and r[(Up)19U], the final unblocking process must be carried out above pH 3 if hydrolytic cleavage and migration are to be avoided. It is demonstrated that the rate of acid-catalyzed hydrolysis of the internucleotide linkages of oligoribonucleotides is sequence dependent. As Fpmp groups may be virtually completely removed from average partially-protected oligoribonucleotides within ca. 24 hr at pH 3 and 25 degrees C, it is concluded that Fpmp is a suitable 2'-protecting group even in the synthesis of particularly acid-sensitive sequences.  相似文献   

6.
Modest increases in the concentration of medicarpin, 6-fold in leaves and 4-fold in roots, were observed in alfalfa (Medicago sativa L.) seedlings treated with 1 mM metal salts for 72 h. However, medicarpin-3-O-glucoside-6"-O-malonate (MGM) and formononetin-7-O-glucoside-6"-O-malonate (FGM) levels were up to 50-fold lower in metal-treated compared to control roots. Approximately 10% of the "missing" conjugates could be accounted for in the root treatment solution, where FGM and MGM transiently accumulated prior to their hydrolysis. Time-course studies revealed that total isoflavonoid content (roots plus solution) increased slightly after CuCl2 treatment, whereas the levels of FGM and MGM increased rapidly in alfalfa roots immersed in water. This increase was reduced by aeration. The phenylalanine ammonia-lyase inhibitor L-[alpha]-aminooxy-[beta]-phenylpropionic acid was used to show that immersion of the roots reduced conjugate rates of degradation, which explains their accumulation. In contrast, conjugate rates of degradation were elevated in CuCl2-treated roots, with 50% of the increase being due to hydrolysis. Up to 90% of formononetin and medicarpin produced in response to CuCl2 treatment arose via conjugate hydrolysis. Our results demonstrate that both immersion/anaerobiosis and abiotic elicitation modify isoflavonoid metabolism in alfalfa, and that metal-stimulated accumulation of phytoalexins may arise through the release from preformed stores rather than de novo synthesis.  相似文献   

7.
Derivatives of 5'-32P labeled (pU)3 an (pU)6 bearing 4-(N-2-chloroethyl-N-methylamino)benzylmethylamine residue attached to 5'-phosphate via phosphamide bond and (Up)5U[32P]pC and (Up)11U[32P]pC bearing 4-(N-2-chloroethyl-N-methylamino)benzyl residue attached to 3'-end via benzylidene bond were applied for the affinity labeling of 80S ribosomes from human placenta in the presence of a cognate tRNA. The derivatives of 32P-labeled pAUG and pAUGU3 analogous to the 5'-phosphamides of (pU)n were used for affinity labeling of 40S subunits in the presence of ternary complex eIF-2.GTP.Met-tRNA(f). The sites of the reagents' attachment to 18S ribosomal RNA were identified by blot-hybridization of the modified 18S rRNA with restriction fragments of the corresponding rDNA. They were found to be located within positions 976-1057 for (pU)6 and pAUGU3 derivatives and within 976-1164 for (pU)3 and pAUG ones. The sites of 18S rRNA modification with the derivatives of (Up)5UpC and (Up)11UpC were found within positions 1610-1869 at 3'-end of the molecule. All the sites identified here are located presumably within highly conserved parts of the eukaryotic small subunit rRNA secondary structure.  相似文献   

8.
Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-l-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip(5)I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5'-triphosphate tetrasodium salt (2-ThioUTP; P2Y(2) agonist)-, uridine-5'-(γ-thio)-triphosphate trisodium salt (UTPγS; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5'-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)A-stimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.  相似文献   

9.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

10.

Background

Several molecular and cellular processes in the vertebrate brain exhibit differences between males and females, leading to sexual dimorphism in the formation of neural circuits and brain organization. While studies on large-scale brain networks provide ample evidence for both structural and functional sex differences, smaller-scale local networks have remained largely unexplored. In the current study, we investigate sexual dimorphism in cortical dynamics by means of spontaneous Up/Down states, a type of network activity that is exhibited during slow-wave sleep, quiet wakefulness, and anesthesia and is thought to represent the default activity of the cortex.

Methods

Up state activity was monitored by local field potential recordings in coronal brain slices of male and female mice across three ages with distinct secretion profiles of sex hormones: (i) pre-puberty (17–21 days old), (ii) 3–9 adult (months old), and (iii) old (19–24 months old).

Results

Female mice of all ages exhibited longer and more frequent Up states compared to aged-matched male mice. Power spectrum analysis revealed sex differences in the relative power of Up state events, with female mice showing reduced power in the delta range (1–4 Hz) and increased power in the theta range (4–8 Hz) compared to male mice. No sex differences were found in the characteristics of Up state peak voltage and latency.

Conclusions

The present study revealed for the first time sex differences in intracortical network activity, using an ex vivo paradigm of spontaneously occurring Up/Down states. We report significant sex differences in Up state properties that are already present in pre-puberty animals and are maintained through adulthood and old age.
  相似文献   

11.
Oligo(U) derivatives with [14C]-4-(N-2-chloroethyl-N-methylamino)benzaldehyde attached to 3'-end cis-diol group via acetal bond, p(Up)n-1UCHRCl as well as with [14C]-4-(N-2-chloroethyl-N-methylamino)benzylamine attached to 5'-phosphate via amide bond, ClRCH2NHpU(pU)6 were used to modify 70S E. coli ribosomes near mRNA binding centre. Within ternary complex with ribosome and tRNAPhe all reagents covalently bind to ribosome the extent of modification being 0.1-0.4 mole/mole 70S. p(Up)n-1UCHRCl alkylates either 30S (n=5,7) or both subunits (n=6,8). rRNA is preferentially modified within 30S subunit. ClRCH2NHpU(pU)6 alkylates both subunits the proteins being mainly modified. The distribution of the label among proteins differ for various reagents. S4, S5, S7, S9, S11, S13, S15, S18 and S21 are found to be alkylated within 30S subunit, proteins L1, L2, L6, L7/L12, L19, L31 and L32 are modified in the 50S subunit. Most proteins modified within 30S subunit are located at the "head" of this subunit and proteins modified within 50S subunit are located at the surface of the contact between this subunit and the "head" of 30S subunit at the model of Stoffler.  相似文献   

12.
Dinucleoside polyphosphates are well described as direct vasoconstrictors and as mediators with strong proliferative properties, however, less is known about their effects on nucleotide-converting pathways. Therefore, the present study investigates the effects of Ap(4)A (diadenosine tetraphosphate), Up(4)A (uridine adenosine tetraphosphate) and Ap(5)A (diadenosine pentaphosphate) and the non-selective P2 antagonist suramin on human serum and endothelial nucleotide-converting enzymes. Human serum and HUVECs (human umbilical vein endothelial cells) were pretreated with various concentrations of dinucleotide polyphosphates and suramin. Adenylate kinase and NDP kinase activities were then quantified radiochemically by TLC analysis of the ATP-induced conversion of [(3)H]AMP and [(3)H]ADP into [(3)H]ADP/ATP and [(3)H]ATP respectively. Endothelial NTPDase (nucleoside triphosphate diphosphohydrolase) activity was additionally determined using [(3)H]ADP and [(3)H]ATP as preferred substrates. Dinucleoside polyphosphates and suramin have an inhibitory effect on the serum adenylate kinase [pIC(50) values (-log IC(50)): Ap(4)A, 4.67+/-0.03; Up(4)A, 3.70+/-0.10; Ap(5)A, 6.31+/-0.03; suramin, 3.74+/-0.07], as well as on endothelial adenylate kinase (pIC(50) values: Ap(4)A, 4.17+/-0.07; Up(4)A, 2.94+/-0.02; Ap(5)A, 5.97+/-0.04; suramin, 4.23+/-0.07), but no significant effects on serum NDP kinase, emphasizing the selectivity of these inhibitors. Furthermore, Ap(4)A, Up(4)A, Ap(5)A and suramin progressively inhibited the rates of [(3)H]ADP (pIC(50) values: Ap(4)A, 3.38+/-0.09; Up(4)A, 2.78+/-0.06; Ap(5)A, 4.42+/-0.11; suramin, 4.10+/-0.07) and [(3)H]ATP (pIC(50) values: Ap(4)A, 3.06+/-0.06; Ap(5)A, 3.05+/-0.12; suramin, 4.14+/-0.05) hydrolyses by cultured HUVECs. Up(4)A has no significant effect on the endothelial NTPDase activity. Although the half-lives for Ap(4)A, Up(4)A and Ap(5)A in serum are comparable with the incubation times of the assays used in the present study, secondary effects of the dinucleotide metabolites are not prominent for these inhibitory effects, since the concentration of metabolites formed are relatively insignificant compared with the 800 mumol/l ATP added as a phosphate donor in the adenylate kinase and NDP kinase assays. This comparative competitive study suggests that Ap(4)A and Ap(5)A contribute to the purinergic responses via inhibition of adenylate-kinase-mediated conversion of endogenous ADP, whereas Up(4)A most likely mediates its vasoregulatory effects via direct binding-mediated mechanisms.  相似文献   

13.
RNA synthesis and ATP-dependent (45)Ca(2+) uptake were measured simultaneously in isolated nuclear fraction of rat liver nuclei. Maximal level of RNA synthesis was obtained under ATP-dependent (45)Ca(2+)-uptake conditions (1 microM free [Ca(2+)] and 1 mM ATP in the bathing solution). This experimental condition was defined as "stimulated nuclei" condition. ATP-dependent (45)Ca(2+) uptake was inhibited using different strategies including: (a) eliminating Ca(2+) (1 mM EGTA); (b) lowering the ATP concentration; (c) modifying nuclear envelope membranes Ca(2+) permeability (Ca(2+) ionophores); or (d) inhibiting the nuclear Ca(2+) pump (thapsigargin and 3',3',5',5'-tetraiodophenolsulfonephthalein). Under all the above conditions, RNA synthesis was lower than in "stimulated nuclei" condition. In the presence of ionomycin, RNA synthesis was significantly higher at 500 nM free [Ca(2+)], as compared with RNA synthesis in a Ca(2+)-free medium or at 1muM free [Ca(2+)]. However, even in such condition (500 nM free [Ca(2+)]), RNA synthesis was lower than RNA synthesis obtained in "stimulated nuclei" condition. We suggest two components for the effect of Ca(2+) on RNA synthesis: (A) a direct effect of nucleoplasmic [Ca(2+)]; and (B) an effect dependent on the accumulation of Ca(2+) in the nuclear envelope store mediated by the SERCA nuclear Ca(2+) pump.  相似文献   

14.
Al4(C5Me4H)4: Structure, reactivity and bonding   总被引:1,自引:0,他引:1  
The synthesis of Al4R4 (R = C5(CH3)4H) (3) and the tetrahedral structure in the solid state are described. These results as well as the 27Al NMR spectra of 3 in solution are in line with the data obtained from DFT calculations. These calculations also support the failed observation of a monomeric AlR species in solution. Monomeric and tetrameric molecules of 3 are discussed with respect to those of (AlCp)4 (1) and (AlCp)4 (2). The increasing Al-Al bond strength from 1 to 3 and 2 from X-ray data is also supported by structural and energetic results from DFT calculations.  相似文献   

15.
Extracellular nucleotides, such as ATP, UDP, and UTP, regulate pulmonary vascular tone through P2X and P2Y receptors. Recently, uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived vasoconstrictive factor. Up(4)A contains both purine and pyrimidine moieties, which potentially activate P2X and P2Y receptors. The present study examined the effect of Up(4)A on contractility of isolated rat pulmonary artery. Up(4)A at 1-100 microM stimulated contraction in a concentration-dependent manner. Up(4)A was equipotent as UTP and UDP in the endothelium-denuded artery while much more effective than UTP and UDP in endothelium-intact preparations. The vasoconstrictor effect of Up(4)A was inhibited by suramin but not IP(5)I or desensitization of P2X receptors with alpha,beta-methylene-ATP (alpha,beta-Me-ATP). Up(4)A-induced contraction was also inhibited by pretreatment with thapsigargin, nitrendipine, or EGTA but unaffected by H1152. Furthermore, unlike ATP and UTP, Up(4)A did not induce relaxation of endothelium-intact preparations precontracted with phenylephrine. These results suggest that Up(4)A is a potent vasoconstrictor, but not a vasodilator, of the rat pulmonary artery. Up(4)A likely acts through a suramin-sensitive P2Y receptor. The contractile effect of Up(4)A involves the entry of extracellular Ca(2+) and release of Ca(2+) from intracellular stores but not Ca(2+) sensitization via the RhoA/Rho kinase pathway. Up(4)A, therefore, potentially plays an important role in the regulation of pulmonary vascular tone.  相似文献   

16.
Searls T  Chen DL  Lan T  McLaughlin LW 《Biochemistry》2000,39(15):4375-4382
Bacteriophage T7 primase catalyzes the synthesis of the oligoribonucleotides pppACC(C/A) and pppACAC from the single-stranded DNA template sites 3'-d[CTGG(G/T)]-5' and 3'-(CTGTG)-5', respectively. The 3'-terminal deoxycytidine residue is conserved but noncoding. A series of nucleoside analogues have been prepared and incorporated into the conserved 3'-d(CTG)-5' site, and the effects of these analogue templates on T7 primase activity have been examined. The nucleosides employed include a novel pyrimidine derivative, 2-amino-5-(beta-2-deoxy-D-erythro-pentofuranosyl)pyridine (d2APy), whose synthesis is described. Template sites containing d2APy in place of the cryptic dC support oligoribonucleotide synthesis whereas those containing 3-deaza-2'-deoxycytidine (dc(3)C) and 5-methyl-6-oxo-2'-deoxycytidine (dm(5ox)C) substitutions do not, suggesting that the N3 nitrogen of cytidine is used for a critical interaction by the enzyme. Recognition sites containing 4-amino-1-(beta-2-deoxy-D-erythro-pentofuranosyl)-5-methyl-2,6[1H, 3H]-pyrimidione (dm(3)2P) or 2'-deoxyuridine (dU) substitutions for dT support oligoribonucleotide synthesis whereas those containing 5-methyl-4-pyrimidinone 2'-deoxyriboside (d(2H)T) substitutions do not, suggesting the importance of Watson-Crick interactions at this template residue. Template sites containing 7-deaza-2'-deoxyguanosine (dc(7)G) or 2'-deoxyinosine (dI) in place of dG support oligoribonucleotide synthesis. The reduced extent to which dc(7)G is successful within the template suggests a primase-DNA interaction. Inhibition studies suggest that the primase enzyme binds "null" substrates but cannot initiate RNA synthesis.  相似文献   

17.
Beyond serving as a mechanical barrier, the endothelium has important regulatory functions. The discovery of nitric oxide revolutionized our understanding of vasoregulation. In contrast, the identity of endothelium-derived vasoconstrictive factors (EDCFs) remains unclear. The supernatant obtained from mechanically stimulated human endothelial cells obtained from dermal vessels elicited a vasoconstrictive response in an isolated perfused rat kidney. A purinoceptor blocker had a greater effect than an endothelin receptor blocker in decreasing endothelially derived vasoconstriction in the isolated perfused rat kidney. The nucleotide uridine adenosine tetraphosphate (Up(4)A) was isolated from the supernatant of stimulated human endothelium and identified by mass spectrometry. Up(4)A is likely to exert vasoconstriction predominantly through P2X1 receptors, and probably also through P2Y2 and P2Y4 receptors. Plasma concentrations of Up(4)A that cause vasoconstriction are found in healthy subjects. Stimulation with adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), acetylcholine, endothelin, A23187 and mechanical stress releases Up(4)A from endothelium, suggesting that Up(4)A contributes to vascular autoregulation. To our knowledge, Up(4)A is the first dinucleotide isolated from living organisms that contains both purine and pyrimidine moieties. We conclude that Up(4)A is a novel potent nonpeptidic EDCF. Its vasoactive effects, plasma concentrations and its release upon endothelial stimulation strongly suggest that Up(4)A has a functional vasoregulatory role.  相似文献   

18.

Background

Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer.

Methods

Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU.

Results

PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells.

Conclusions

Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.  相似文献   

19.
(1) "Uridine hydrates" i.e. (+)- and (-)6-hydroxy-5, 6-dihydrouridine were formed under gamma irradiation in a deaerated aqueous solution of uridine. (2) The structures of two diastereoisomers were determined by spectroscopic measurements (infrared, ultraviolet and NMR) and verified by stereospecific synthesis; uridine hydrates were prepared by mild reduction of trans(+)- and (-)iodohydrins with acetic acid and zinc power. (3) The carbon 6 epimerisation of uridine hydrates 6R or 6S was performed in triated water (pH 5.5, 30 degrees C) and at the same time tritium incorporation on carbon 5 was noted. The mechanism of these reactions could be explained by the opening of the N1-C6 bond of the pyrimidine ring, followed by ketoenolisation reaction of carbons 4 and 5. (4) The 250 MHz NMR analysis has allowed us to determine the nucleoside conformations. Nucleosides had mainly the S(C2' endo) conformation. A slight preference of gauche-gauche (gg) rotamer of the exocyclic hydroxymethyl group was noted and the aglycone was in the anti conformation.  相似文献   

20.
An effective in vitro enzymatic synthesis is described for the production of nucleoside triphosphates (NTPs) which are stereo-specifically deuterated on the H5" position with high selectivity (>98%), and which can have a variety of different labels (13C, 15N, 2H) in other positions. The NTPs can subsequently be employed in the enzymatic synthesis of RNAs using T7 polymerase from a DNA template. The stereo-specific deuteration of the H5" immediately provides the stereo-specific assignment of H5' resonances in NMR spectra, giving access to important structural parameters. Stereo-chemical H-exchange was used to convert commercially available 1,2,3,4,5,6,6-2H-1,2,3,4,5,6-13C-D-glucose (d7-13C6-D-glucose) into [1,2,3,4,5,6(R)-2H-1,2,3,4,5,6-13C]-D-glucose (d6-13C6-D-glucose). [1',3',4',5"-2H-1',2',3',4',5'-13C]GTP (d4-13C5-GTP) was then produced from d6-13C6-D-glucose and guanine base via in vitro enzymatic synthesis employing enzymes from the pentose-phosphate, nucleotide biosynthesis and salvage pathways. The overall yield was approximately 60 mg NTP per 1 g glucose, comparable with the yield of NTPs isolated from Escherichia coli grown on enriched media. The d4-13C5-GTP, together with in vitro synthesised d5-UTP, d5-CTP and non-labelled ATP, were used in the synthesis of a 31 nt RNA derived from the primer binding site of hepatitis B virus genomic RNA. (13C,1H) hetero-nuclear multiple-quantum spectra of the specifically deuterated sample and of a non-deuterated uniformly 13C/15N-labelled sample demonstrates the reduced spectral crowding and line width narrowing compared with 13C-labelled non-deuterated RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号