首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven amino acid substitutions at Val-121 of human carbonic anhydrase II including Gly, Ala, Ser, Leu, Ile, Lys, and Arg, were constructed by site-directed mutagenesis. This residue is at the mouth of the hydrophobic pocket in the enzyme active site. The CO2 hydrase activity and the p-nitrophenyl esterase activity of these CAII variants correlate with the hydrophobicity of the residue, suggesting that the hydrophobic character of this residue is important for catalysis. The effects of these mutations on the steady-state kinetics for CO2 hydration occur mainly in kcat/Km and Km, consistent with involvement of this residue in CO2 association. The Val-121----Ala mutant, which exhibits about one-third normal CO2 hydrase activity, has been studied by x-ray crystallographic methods. No significant changes in the mutant enzyme conformation are evident relative to the wild-type enzyme. Since Val-121 is at the mouth of the hydrophobic pocket, its substitution by the methyl side chain of alanine makes the pocket mouth significantly wider than that of the wild-type enzyme. Hence, although a moderately wide (and deep) pocket is important for substrate association, a wider mouth to this pocket does not seriously compromise the catalytic approach of CO2 toward nucleophilic zinc-bound hydroxide.  相似文献   

2.
Pyroglutamyl-peptidase is able to specifically remove the amino-terminal pyroglutamyl residue protecting proteins or peptides from aminopeptidases. To clarify the mechanism of substrate recognition for the unique structure of the pyrrolidone ring, x-ray crystallography and site-directed mutagenesis were applied. The crystal structure of pyroglutamyl-peptidase bound to a transition state analog inhibitor (Inh), pyroglutaminal, was determined. Two hydrogen bonds were located between the main chain of the enzyme and the inhibitor (71:O.H-N:Inh and Gln71:N-H.OE:Inh), and the pyrrolidone ring of the inhibitor was inserted into the hydrophobic pocket composed of Phe-10, Phe-13, Thr-45, Ile-92, Phe-142, and Val-143. To study in detail the hydrophobic pocket, Phe-10, Phe-13, and Phe-142 were selected for mutation experiments. The k(cat) value of the F10Y mutant decreased, but the two phenylalanine mutants F13Y and F142Y did not exhibit significant changes in kinetic parameters compared with the wild-type enzyme. The catalytic efficiencies (k(cat)/K(m)) for the F13A and F142A mutants were less than 1000-fold that of the wild-type enzyme. The x-ray crystallographic study of the F142A mutant showed no significant change except for a minor one in the hydrophobic pocket compared with the wild type. These findings indicate that the molecular recognition of pyroglutamic acid is achieved through two hydrogen bonds and an insertion in the hydrophobic pocket. In the pocket, Phe-10 is more important to the hydrophobic interaction than is Phe-142, and furthermore Phe-13 serves as an "induced fit" mechanism.  相似文献   

3.
Rates of hydrolysis of 4-, 3-, and 2-nitrophenyl acetate and 4-nitrophenyl propionate catalyzed by wild-type and mutant forms of human carbonic anhydrase II have been measured. The results show that the mutations Tyr7-->Phe and Ala65-->Leu lead to activity enhancements with all the investigated substrates, but there is no significant effect on the specificity. In contrast, some mutations at sequence position 200 have large effects on specificity. For example, while the mutation Thr200-->Gly results in a threefold increase of the rate of hydrolysis of 4-nitrophenyl acetate, the activity is enhanced 10 times with the meta-substituted substrate and 380 times with the ortho-substituted substrate. These results are interpreted in terms of the removal in the mutant of a steric interference between the 2-NO2 group, in particular, and the side chain of Thr200. Mutants involving residues lining a hydrophobic pocket near the catalytically essential zinc ion have also been investigated. The most pronounced effect on specificity was found for the Val143-->Gly mutant. This mutation leads to a sixfold decrease of the rate of hydrolysis of 4-nitrophenyl acetate but a 20-fold increase of the activity with the propionyl ester as substrate. These results suggest that the side chain of Val143 interferes sterically with the acyl moiety of 4-nitrophenyl propionate. Based on these results, we have constructed a hypothetical model of the location of these ester substrates in the enzymic active site.  相似文献   

4.
Cheon YH  Park HS  Kim JH  Kim Y  Kim HS 《Biochemistry》2004,43(23):7413-7420
We previously proposed that the stereochemistry gate loops (SGLs) constituting the substrate binding pocket of D-hydantoinase, a (beta/alpha)(8)-barrel enzyme, might be major structural determinants of the substrate specificity [Cheon, Y. H., et al. (2002) Biochemistry 41, 9410-9417]. To construct a mutant D-hydantoinase with favorable substrate specificity for the synthesis of commercially important non-natural amino acids, the SGL loops of the enzyme were rationally manipulated on the basis of the structural analysis and sequence alignment of three hydantoinases with distinct substrate specificities. In the SGLs of D-hydantoinase from Bacillus stearothermophilus SD1, mutations of hydrophobic and bulky residues Met 63, Leu 65, Phe 152, and Phe 159, which interact with the exocyclic substituent of the substrate, induced remarkable changes in the substrate specificities. In particular, the substrate specificity of mutant F159A toward aromatic substrate hydroxyphenylhydantoin (HPH) was enhanced by approximately 200-fold compared with that of the wild-type enzyme. Saturation mutagenesis at position 159 revealed that k(cat) for aromatic substrates increased gradually as the size of the amino acid side chain decreased, and this seems to be due to reduced steric hindrance between the bulky exocyclic group of the substrate and the amino acid side chains. When site-directed random mutagenesis of residues 63 and 65 was conducted with the wild type and mutant F159A, the selected enzymes (M63F/L65V and L65F/F159A) exhibited approximately 10-fold higher k(cat) values for HPH than the wild-type counterpart, which is likely to result from reorganization of the active site for efficient turnover. These results indicate that the amino acid residues of SGLs forming the substrate binding pocket are critical for the substrate specificity of D-hydantoinase, and the results also imply that substrate specificities of cyclic amidohydrolase family enzymes can be modulated by rational design of these SGLs.  相似文献   

5.
Aeromonas caviae R-specific enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJ(Ac)) is capable of providing (R)-3-hydroxyacyl-CoA with a chain length of four to six carbon atoms from the fatty acid beta-oxidation pathway for polyhydroxyalkanoate (PHA) synthesis. In this study, amino acid substitutions were introduced into PhaJ(Ac) by site-directed mutagenesis to investigate the feasibility of altering the specificity for the acyl chain length of the substrate. A crystallographic structure analysis of PhaJ(Ac) revealed that Ser-62, Leu-65, and Val-130 define the width and depth of the acyl-chain-binding pocket. Accordingly, we targeted these three residues for amino acid substitution. Nine single-mutation enzymes and two double-mutation enzymes were generated, and their hydratase activities were assayed in vitro by using trans-2-octenoyl-CoA (C(8)) as a substrate. Three of these mutant enzymes, L65A, L65G, and V130G, exhibited significantly high activities toward octenoyl-CoA than the wild-type enzyme exhibited. PHA formation from dodecanoate (C(12)) was examined by using the mutated PhaJ(Ac) as a monomer supplier in recombinant Escherichia coli LS5218 harboring a PHA synthase gene from Pseudomonas sp. strain 61-3 (phaC1(Ps)). When L65A, L65G, or V130G was used individually, increased molar fractions of 3-hydroxyoctanoate (C(8)) and 3-hydroxydecanoate (C(10)) units were incorporated into PHA. These results revealed that Leu-65 and Val-130 affect the acyl chain length substrate specificity. Furthermore, comparative kinetic analyses of the wild-type enzyme and the L65A and V130G mutants were performed, and the mechanisms underlying changes in substrate specificity are discussed.  相似文献   

6.
Cyclooxygenases (COXs) are the therapeutic targets of nonsteroidal antiinflammatory drugs. Indomethacin (INDO) was one of the first nonsteroidal antiinflammatory drugs to be characterized as a time-dependent, functionally irreversible inhibitor, but the molecular basis of this phenomenon is uncertain. In the crystal structure of INDO bound to COX-2, a small hydrophobic pocket was identified that surrounds the 2'-methyl group of INDO. The pocket is formed by the residues Ala-527, Val-349, Ser-530, and Leu-531. The contribution of this pocket to inhibition was evaluated by altering its volume by mutagenesis of Val-349. The V349A mutation expanded the pocket and increased the potency of INDO, whereas the V349L mutation reduced the size of the pocket and decreased the potency of INDO. Particularly striking was the reversibility of INDO inhibition of the V349L mutant. The 2'-des-methyl analogue of INDO (DM-INDO) was synthesized and tested against wild-type COX-1 and COX-2, as well as the Val-349 mutants. DM-INDO bound to all enzymes tested, but only inhibited wt mCOX-2 and the V349I enzyme. Without the 2'-methyl group anchoring DM-INDO in the active site, the compound was readily competed off of the enzyme by arachidonic acid. The kinetics of inhibition were comparable to the kinetics of binding as evaluated by fluorescence quenching. These results highlight binding of the 2'-methyl of INDO in the hydrophobic pocket as an important determinant of its time-dependent inhibition of COX enzymes.  相似文献   

7.
Kim D  Guengerich FP 《Biochemistry》2004,43(4):981-988
Cytochrome P450 (P450) 1A2 is the major enzyme involved in the metabolism of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ) and other heterocyclic arylamines and their bioactivation to mutagens. Random mutant libraries of human P450 1A2, in which mutations were made throughout the entire open reading frame, were screened with Escherichia coli DJ3109pNM12, a strain designed to bioactivate MeIQ and detect mutagenicity of the products. Mutant clones with enhanced activity were confirmed using quantitative measurement of MeIQ N-hydroxylation. Three consecutive rounds of random mutagenesis and screening were performed and yielded a highly improved P450 1A2 mutant, SF513 (E225N/Q258H/G437D), with >10-fold increased MeIQ activation based on the E. coli genotoxicity assay and 12-fold enhanced catalytic efficiency (k(cat)/K(m)) in steady-state N-hydroxylation assays done with isolated membrane fractions. SF513 displayed selectively enhanced activity for MeIQ compared to other heterocyclic arylamines. The enhanced catalytic activity was not attributed to changes in any of several individual steps examined, including substrate binding, total NADPH oxidation, or H(2)O(2) formation. Homology modeling based on an X-ray structure of rabbit P450 2C5 suggested that the E225N and Q258H mutations are located in the F-helix and G-helix, respectively, and that the G437D mutation is in the "meander" region, apparently rather distant from the substrate. In summary, the approach generated a mutant enzyme with selectively elevated activity for a single substrate, even to the extent of a difference of a single methyl group, and several mutations had interacting roles in the development of the selected mutant protein.  相似文献   

8.
The TREX1 enzyme processes DNA ends as the major 3' --> 5' exonuclease activity in human cells. Mutations in the TREX1 gene are an underlying cause of the neurological brain disease Aicardi-Goutières syndrome implicating TREX1 dysfunction in an aberrant immune response. TREX1 action during apoptosis likely prevents autoimmune reaction to DNA that would otherwise persist. To understand the impact of TREX1 mutations identified in patients with Aicardi-Goutières syndrome on structure and activity we determined the x-ray crystal structure of the dimeric mouse TREX1 protein in substrate and product complexes containing single-stranded DNA and deoxyadenosine monophosphate, respectively. The structures show the specific interactions between the bound nucleotides and the residues lining the binding pocket of the 3' terminal nucleotide within the enzyme active site that account for specificity, and provide the molecular basis for understanding mutations that lead to disease. Three mutant forms of TREX1 protein identified in patients with Aicardi-Goutières syndrome were prepared and the measured activities show that these specific mutations reduce enzyme activity by 4-35,000-fold. The structure also reveals an 8-amino acid polyproline II helix within the TREX1 enzyme that suggests a mechanism for interactions of this exonuclease with other protein complexes.  相似文献   

9.
Model-free approaches (error-prone PCR to introduce random mutations, DNA shuffling to combine positive mutations, and screening of the resultant mutant libraries) have been used to enhance the catalytic activity and thermostability of alpha-aspartyl dipeptidase from Salmonella typhimurium, which is uniquely able to hydrolyze Asp-X dipeptides (where X is any amino acid) and one tripeptide (Asp-Gly-Gly). Under double selective pressures of activity and thermostability, through two rounds of error-prone PCR and three sequential generations of DNA shuffling, coupled with screening, a mutant pepEM3074 with approximately 47-fold increased enzyme activity compared with its wild-type parent was obtained. Moreover, the stability of pepEM3074 is increased significantly. Three amino acid substitutions (Asn89His, Gln153Glu, and Leu205Arg), two of them are near the active site and substrate binding pocket, were identified by sequencing the genes encoding this evolved enzyme. The mechanism of the enhancement of activity and stability was analyzed in this paper.  相似文献   

10.
The substrate reactivity of the flavoenzyme 2-hydroxybiphenyl 3-monooxygenase (EC, HbpA) was changed by directed evolution using error-prone PCR. In situ screening of mutant libraries resulted in the identification of proteins with increased activity towards 2-tert-butylphenol and guaiacol (2-methoxyphenol). One enzyme variant contained amino acid substitutions V368A/L417F, which were inserted by two rounds of mutagenesis. The double replacement improved the efficiency of substrate hydroxylation by reducing the uncoupled oxidation of NADH. With guaiacol as substrate, the two substitutions increased V(max) from 0.22 to 0.43 units mg(-1) protein and decreased the K'(m) from 588 to 143 microm, improving k'(cat)/K'(m) by a factor of 8.2. With 2-tert-butylphenol as the substrate, k'(cat) was increased more than 5-fold. Another selected enzyme variant contained amino acid substitution I244V and had a 30% higher specific activity with 2-sec-butylphenol, guaiacol, and the "natural" substrate 2-hydroxybiphenyl. The K'(m) for guaiacol decreased with this mutant, but the K'(m) for 2-hydroxybiphenyl increased. The primary structure of HbpA shares 20.1% sequence identity with phenol 2-monooxygenase from Trichosporon cutaneum. Structure homology modeling with this three-domain enzyme suggests that Ile(244) of HbpA is located in the substrate binding pocket and is involved in accommodating the phenyl substituent of the phenol. In contrast, Val(368) and Leu(417) are not close to the active site and would not have been obvious candidates for modification by rational design.  相似文献   

11.
It has been shown that highly conserved residues that form crucial structural elements of the catalytic apparatus may be used to account for the evolutionary history of enzymes. Using saturation mutagenesis, we investigated the role of a conserved residue (Arg(526)) at the active site of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1 in substrate discrimination and catalytic mechanism. This enzyme has both peptidase and esterase activities. The esterase activity of the wild-type enzyme with p-nitrophenyl caprylate as substrate is approximately 7 times higher than the peptidase activity with Ac-Leu-p-nitroanilide as substrate. However, with the same substrates, this difference was increased to approximately 150-fold for mutant R526V. A more dramatic effect occurred with mutant R526E, which essentially completely abolished the peptidase activity but decreased the esterase activity only by a factor of 2, leading to a 785-fold difference in the enzyme activities. These results provide rare examples that illustrate how enzymes can be evolved to discriminate their substrates by a single mutation. The possible structural and energetic effects of the mutations on k(cat) and K(m) of the enzyme were discussed based on molecular dynamics simulation studies.  相似文献   

12.
Cu, Zn superoxide dismutase protects cells from oxidative damage by removing superoxide radicals in one of the fastest enzyme reactions known. The redox reaction at the active-site Cu ion is rate-limited by diffusion and enhanced by electrostatic guidance. To quantitatively define the electrostatic and mechanistic contributions of sequence-invariant Arg-143 in human Cu, Zn superoxide dismutase, single-site mutants at this position were investigated experimentally and computationally. Rate constants for several Arg-143 mutants were determined at different pH and ionic strength conditions using pulse radiolytic methods and compared to results from Brownian dynamics simulations. At physiological pH, substitution of Arg-143 by Lys caused a 2-fold drop in rate, neutral substitutions (Ile, Ala) reduced the rate about 10-fold, while charge-reversing substitutions (Asp, Glu) caused a 100-fold decrease. Position 143 mutants showed pH dependencies not seen in other mutants. At low pH, the acidic residue mutations exhibited pro-tonation/deprotonation effects. At high pH, all enzymes showed typical decreases in rate except the Lys mutant in which the rate dropped off at an unusually low pH. Increasing ionic strength at acidic pH decreased the rates of the wild-type enzyme and Lys mutant, while the rate of the Glu mutant was unaffected. Increasing ionic strength at higher pH (>10) increased the rates of the Lys and Glu mutants while the rate of the wild-type enzyme was unaffected. Reaction simulations with Brownian dynamics incorporating electrostatic effects tested computational predictability of ionic strength dependencies of the wild-type enzyme and the Lys, Ile, and Glu mutants. The calculated and experimental ionic strength profiles gave similar slopes in all but the Glu mutant, indicating that the electrostatic attraction of the substrate is accurately modeled. Differences between the calculated and experimental rates for the Glu and Lys mutants reflect the mechanistic contribution of Arg-143. Results from this joint analysis establish that, aside from the Cu ligands, Arg-143 is the single most important residue in Cu, Zn superoxide dismutase both electrostatically and mechanistically, and provide an explanation for the evolutionary selection of arginine at position 143. © 1994 Wiley-Liss, Inc.  相似文献   

13.
D M Epstein  R H Abeles 《Biochemistry》1992,31(45):11216-11223
The function of a hydrogen bond network, comprised of the hydroxyl groups of Tyr 171 and Ser 214, in the hydrophobic S2 subsite of alpha-lytic protease, was investigated by mutagenesis and the kinetics of a substrate analog series. To study the catalytic role of the Tyr 171 and Ser 214 hydroxyl groups, Tyr 171 was converted to phenylalanine (Y171F) and Ser 214 to alanine (S214A). The double mutant (Y171F: S214A) also was generated. The single S214A and double Y171F:S214A mutations cause differential effects on catalysis and proenzyme processing. For S214A, kcat/Km is (4.9 x 10(3))-fold lower than that of wild type and proenzyme processing is blocked. For the double mutant (Y171F:S214A), kcat/Km is 82-fold lower than that of wild type and proenzyme processing occurs. In Y171F, kcat/Km is 34-fold lower than that of wild type, and the proenzyme is processed. The data indicate that Ser 214, although conserved among serine proteases and hydrogen bonded to the catalytic triad [Brayer, G. D., Delbaere, L. T. J., & James, M. N. G. (1979) J. Mol. Biol. 131, 743], is not essential for catalytic function in alpha-lytic protease. A substrate series (in which peptide length is varied) established that the mutations (Y171F and Y171F:S214A) do not alter enzyme-substrate interactions in subsites other than S2. The pH dependence of kcat/Km for Y171F and Y171F:S214A has changed less than 0.5 unit from that of wild type; this suggests the catalytic triad is unperturbed. In wild type, hydrophobic interactions at S2 increase kcat/Km by up to (1.2 x 10(3))-fold with no effect on Km.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A single mutation, involving the replacement of an arginine residue with histidine to reconstruct a zinc-binding site, suffices to change a catalytically inactive murine carbonic anhydrase-related protein (CARP) to an active carbonic anhydrase with a CO2-hydration turnover number of 1.2 x 104 s-1. Further mutations, leading to a more 'carbonic anhydrase-like' active-site cavity, results in increased activity. A quintuple mutant having His94, Gln92, Val121, Val143, and Thr200 (human carbonic anhydrase I numbering system) shows kcat = 4 x 104 s-1 and kcat/Km = 2 x 107 M-1.s-1, greatly exceeding the corresponding values for carbonic anhydrase isozyme III and approaching those characterizing carbonic anhydrase I. In addition, a buffer change from 50 mM Taps/NaOH to 50 mM 1, 2-dimethylimidazole/H2SO4 at pH 9 results in a 14-fold increase in kcat for this quintuple mutant. The CO2-hydrating activity of a double mutant with His94 and Gln92 shows complex pH-dependence, but the other mutants investigated behave as if the activity (kcat/Km) is controlled by the basic form of a single group with pKa near 7.7. In a similar way to human carbonic anhydrase II, the buffer behaves formally as a second substrate in a ping-pong pattern, suggesting that proton transfer between a zinc-bound water molecule and buffer limits the maximal rate of catalysis in both systems at low buffer concentrations. However, the results of isotope-exchange kinetic studies suggest that proton shuttling via His64 is insignificant in the CARP mutant in contrast with carbonic anhydrase II. The replacement of Ile residues with Val in positions 121 or 143 results in measurable 4-nitrophenyl acetate hydrolase activity. The pH-rate profile for this activity has a similar shape to those of carbonic anhydrase I and II. CD spectra of the double mutant with His94 and Gln92 are variable, indicating an equilibrium between a compact form of the protein and a 'molten globule'-like form. The introduction of Thr200 seems to stabilize the protein.  相似文献   

15.
Glutamine 143 in human manganese superoxide dismutase (MnSOD) forms a hydrogen bond with the manganese-bound solvent molecule and is investigated by replacement using site-specific mutagenesis. Crystal structures showed that the replacement of Gln 143 with Ala made no significant change in the overall structure of the mutant enzyme. Two new water molecules in Q143A MnSOD were situated in positions nearly identical with the Oepsilon1 and Nepsilon2 of the replaced Gln 143 side chain and maintained a hydrogen-bonded network connecting the manganese-bound solvent molecule to other residues in the active site. However, their presence could not sustain the stability and activity of the enzyme; the main unfolding transition of Q143A was decreased 16 degrees C and its catalysis decreased 250-fold to k(cat)/K(m) = 3 x 10(6) M(-)(1) s(-)(1), as determined by stopped-flow spectrophotometry and pulse radiolysis. The mutant Q143A MnSOD and other mutants at position 143 showed very low levels of product inhibition and favored Mn(II)SOD in the resting state, whereas the wild type showed strong product inhibition and favored Mn(III)SOD. However, these differences did not affect the rate constant for dissociation of the product-inhibited complex in Q143A MnSOD which was determined from a characteristic absorbance at 420 nm and was comparable in magnitude ( approximately 100 s(-)(1)) to that of the wild-type enzyme. Hence, Gln 143, which is necessary for maximal activity in superoxide dismutation, appears to have no role in stabilization and dissociation of the product-inhibited complex.  相似文献   

16.
The crystal structure of dipeptidyl aminopeptidase IV from Stenotrophomonas maltophilia was determined at 2.8-A resolution by the multiple isomorphous replacement method, using platinum and selenomethionine derivatives. The crystals belong to space group P4(3)2(1)2, with unit cell parameters a = b = 105.9 A and c = 161.9 A. Dipeptidyl aminopeptidase IV is a homodimer, and the subunit structure is composed of two domains, namely, N-terminal beta-propeller and C-terminal catalytic domains. At the active site, a hydrophobic pocket to accommodate a proline residue of the substrate is conserved as well as those of mammalian enzymes. Stenotrophomonas dipeptidyl aminopeptidase IV exhibited activity toward a substrate containing a 4-hydroxyproline residue at the second position from the N terminus. In the Stenotrophomonas enzyme, one of the residues composing the hydrophobic pocket at the active site is changed to Asn611 from the corresponding residue of Tyr631 in the porcine enzyme, which showed very low activity against the substrate containing 4-hydroxyproline. The N611Y mutant enzyme was generated by site-directed mutagenesis. The activity of this mutant enzyme toward a substrate containing 4-hydroxyproline decreased to 30.6% of that of the wild-type enzyme. Accordingly, it was considered that Asn611 would be one of the major factors involved in the recognition of substrates containing 4-hydroxyproline.  相似文献   

17.
The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190-->Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. Based on a combination of multiconformation analysis of cryo-X-ray crystallographic data, solution nuclear magnetic resonance (NMR), and normal mode calculations, we had hypothesized that the large alteration in specificity of the mutant enzyme is mainly attributable to changes in the dynamic movement of the two walls of the specificity pocket. To test this hypothesis, we performed a principal component analysis using 1-nanosecond molecular dynamics simulations using either a global or local solvent boundary condition. The results of this analysis strongly support our hypothesis and verify the results previously obtained by in vacuo normal mode analysis. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity. As shown here, concerted local movements within proteins can be efficiently analyzed through a combination of principal component analysis and molecular dynamics trajectories using a local solvent boundary condition to reduce computational time and matrix size.  相似文献   

18.
Serine endoproteases such as trypsins and subtilisins are known to have an extended substrate binding region that interacts with residues P6 to P3' of a substrate. In order to investigate the structural and functional effects of replacing residues at the S4 substrate binding pocket, the serine protease from the alkalophilic Bacillus strain PB92, which shows homology with the subtilisins, was mutated at positions 102 and 126-128. Substitution of Val102 by Trp results in a 12-fold increase in activity towards succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (sAAPFpNA). An X-ray structure analysis of the V102W mutant shows that the Trp side chain occupies a hydrophobic pocket at the surface of the molecule leaving a narrow crevice for the P4 residue of a substrate. Better binding of sAAPFpNA by the mutant compared with the wild type protein as indicated by the kinetic data might be due to the hydrophobic interaction of Ala P4 of the substrate with the introduced Trp102 side chain. The observed difference in binding of sAAPFpNA by protease PB92 and thermitase, both of which possess a Trp at position 102, is probably related to the amino acid substitutions at positions 105 and 126 (in the protease PB92 numbering). Kinetic data for the variants obtained by random mutation of residues Ser126, Pro127 and Ser128 reveal that the activity towards sAAPFpNA increases when a hydrophobic residue is introduced at position 126.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Residue Phe375 of cephalosporin acylase has been identified as one of the residues that is involved in substrate specificity. A complete mutational analysis was performed by substituting Phe375 with the 19 other amino acids and characterising all purified mutant enzymes. Several mutations cause a substrate specificity shift from the preferred substrate of the enzyme, glutaryl-7-ACA, towards the desired substrate, adipyl-7-ADCA. The catalytic efficiency ( [Formula: see text] (cat)/ [Formula: see text] (m)) of mutant SY-77(F375C) towards adipyl-7-ADCA was increased 6-fold with respect to the wild-type enzyme, due to a strong decrease of [Formula: see text] (m). The [Formula: see text] (cat) of mutant SY-77(F375H) towards adipyl-7-ADCA was increased 2.4-fold. The mutational effects point at two possible mechanisms by which residue 375 accommodates the long side chain of adipyl-7-ADCA, either by a widening of a hydrophobic ring-like structure that positions the aliphatic part of the side chain of the substrate, or by hydrogen bonding to the carboxylate head of the side chain.  相似文献   

20.
Feng Y  Huang S  Zhang W  Zeng Z  Zou X  Zhong L  Peng J  Jing G 《Biochimie》2004,86(12):4901-901
Staphylococcal nuclease (SNase) is a well-established model for protein folding studies. Its three-dimensional structure has been determined. The enzyme, Ca2+, and DNA or RNA substrate form a ternary complex. Glycine 20 is the second position of the first beta-turn of SNase, which may serve as the folding initiation site for the SNase polypeptide. To study the role of Gly20 in the conformational stability and catalysis of SNase, three mutants, in which Gly20 was replaced by alanine, valine, or isoleucine, were constructed and studied by using circular dichroism spectra, intrinsic and ANS-binding fluorescence spectra, stability and activity assays. The mutations have little effect on the conformational integrity of the mutants. However, the catalytic activity is reduced drastically by the mutations, and the stability of the protein is progressively decreased in the order G20A相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号