首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structures of human alcohol and aldehyde dehydrogenases   总被引:2,自引:0,他引:2  
H J?rnvall  J Hempel  B Vallee 《Enzyme》1987,37(1-2):5-18
Human alcohol dehydrogenase is a dimeric zinc metalloenzyme for which forms of three classes, I, II and III, have been distinguished. Subunits hybridize within but not between classes. There are three types of subunit, alpha, beta, and gamma, in class I. The primary structures of all three forms have been established, as well as the overall properties and the effects of the amino acid substitutions between the various forms. Each subunit has 374 residues, of which 35 exhibit differences among the alpha, beta and gamma chains. Corresponding cDNA structures are also known, as are the genetic organization and details of the gene structures. Allelic variants occur at the beta and gamma loci. Corresponding amino acid substitutions have been characterized, and enzymatic differences between the allelic forms are explained by defined residue exchanges. The results also illustrate recent and repeated isozyme evolution, a subject where alcohol dehydrogenases exceptionally well offer detailed examples. Human aldehyde dehydrogenase occurs of two types, a mitochondrial and a cytosolic form. The enzymes are tetramers, do not contain functional metals, and have subunits which do not form inter-type hybrids. The primary structures have been determined, revealing a positional identity of 68% (in 500 residues) between the mitochondrial and cytosolic forms. The N-terminus is heterogeneous and is not blocked in the subunit of the mitochondrial enzyme, in contrast to that of the cytosolic enzyme or those of all the alcohol dehydrogenases (also cytosolic). A reactive cysteine residue at position 302 has been ascribed functional importance at or close to the active site, is conserved in the two aldehyde dehydrogenases, and is associated with the action of disulfiram on the enzyme. In Oriental populations, a mutant allelic variant of the mitochondrial protein with impaired enzyme function has also been characterized.  相似文献   

3.
Molecular cloning and characterization of rat estrogen receptor cDNA.   总被引:32,自引:4,他引:28       下载免费PDF全文
A cDNA clone of rat uterus estrogen receptor (ER) has been isolated and sequenced. This clone contains a complete open reading frame encoding 600 amino acid residues which is 5 and 11 amino acids larger than the corresponding molecules of human and chicken, respectively. The molecular weight of this protein is calculated to be 67,029. When this clone was ligated to the pSV2 vector and transfected into COS7 cells, a protein was produced that had the same affinity to estrogen as rat uterus ER. This sequence shows 88% homology with human ER; 528 amino acids are identical and 14 amino acids are conservative substitutions. The comparison of rat, human and chicken ER sequences indicate the presence of three highly conserved regions suggesting that these regions play important roles in ER function. The putative DNA-binding domain is completely identical in rat, human and chicken. The C-terminal half region which is thought to be the estrogen binding domain is also highly conserved and is rich in hydrophobic amino acid residues. Southern blot analysis of genomic DNA with ER cDNA as a probe has shown that related sequences are present in the genome.  相似文献   

4.
Serum retinol binding protein (RBP) is a member of the lipocalin family, proteins with up-and-down beta-barrel folds, low levels of sequence identity, and diverse functions. Although tryptophan 24 of RBP is highly conserved among lipocalins, it does not play a direct role in activity. To determine if Trp24 and other conserved residues have roles in stability and/or folding, we investigated the effects of conservative substitutions for the four tryptophans and some adjacent residues on the structure, stability, and spectroscopic properties of apo-RBP. Crystal structures of recombinant human apo-RBP and of a mutant with substitutions for tryptophans 67 and 91 at 1.7 A and 2.0 A resolution, respectively, as well as stability measurements, indicate that these relatively exposed tryptophans have little influence on structure or stability. Although Trp105 is largely buried in the wall of the beta-barrel, it can be replaced with minor effects on stability to thermal and chemical unfolding. In contrast, substitutions of three different amino acids for Trp24 or replacement of Arg139, a conserved residue that interacts with Trp24, lead to similar large losses in stability and lower yields of native protein generated by in vitro folding. The results and the coordinated nature of natural substitutions at these sites support the idea that conserved residues in functionally divergent homologs have roles in stabilizing the native relative to misfolded structures. They also establish conditions for studies of the kinetics of folding and unfolding by identifying spectroscopic signals for monitoring the formation of different substructures.  相似文献   

5.
The crystal structure of a cysteine protease ervatamin B, isolated from the medicinal plant Ervatamia coronaria, has been determined at 1.63 A. The unknown primary structure of the enzyme could also be traced from the high-quality electron density map. The final refined model, consisting of 215 amino acid residues, 208 water molecules, and a thiosulfate ligand molecule, has a crystallographic R-factor of 15.9% and a free R-factor of 18.2% for F > 2sigma(F). The protein belongs to the papain superfamily of cysteine proteases and has some unique properties compared to other members of the family. Though the overall fold of the structure, comprising two domains, is similar to the others, a few natural substitutions of conserved amino acid residues at the interdomain cleft of ervatamin B are expected to increase the stability of the protein. The substitution of a lysine residue by an arginine (residue 177) in this region of the protein may be important, because Lys --> Arg substitution is reported to increase the stability of proteins. Another substitution in this cleft region that helps to hold the domains together through hydrogen bonds is Ser36, replacing a conserved glycine residue in the others. There are also some substitutions in and around the active site cleft. Residues Tyr67, Pro68, Val157, and Ser205 in papain are replaced by Trp67, Met68, Gln156, and Leu208, respectively, in ervatamin B, which reduces the volume of the S2 subsite to almost one-fourth that of papain, and this in turn alters the substrate specificity of the enzyme.  相似文献   

6.
This work presents a method to compare local clusters of interactingresidues as observed in a known three-dimensional protein structurewith corresponding clusters inferred from homologous proteinsequences, assuming conserved protein folding. For this purposethe local environment of a selected residue in a known proteinstructure is defined as the ensemble of amino acids in contactwith it in the folded state. Using a multiple sequence alignmentto identify corresponding residues in homologous proteins, adetailed comparison can be performed between the local environmentof a selected amino acid in the template protein structure andthe expected local environments at the sets of equivalent residues,derived from the aligned protein sequences. The comparison makesit possible to detect conserved local features such as hydrogenbonding or complementarity in residue substitution. A globalmeasure of environmental similarity is also defined, to searchfor conserved amino acid clusters subject to functional or structural constraints. The proposed approach is useful for investigatingprotein function as well as for site-directed mutagenesis experiments,where appropriate amino acid substitutions can be suggestedby observing naturally occurring protein variants.  相似文献   

7.
8.
Suggestions for "safe" residue substitutions in site-directed mutagenesis   总被引:25,自引:0,他引:25  
The conserved topological structure observed in various molecular families such as globins or cytochromes c allows structural equivalencing of residues in every homologous structure and defines in a coherent way a global alignment in each sequence family. A search was performed for equivalent residue pairs in various topological families that were buried in protein cores or exposed at the protein surface and that had mutated but maintained similar unmutated environments. Amino acid residues with atoms in contact with the mutated residue pairs defined the environment. Matrices of preferred amino acid exchanges were then constructed and preferred or avoided amino acid substitutions deduced. Given the conserved atomic neighborhoods, such natural in vivo substitutions are subject to similar constrains as point mutations performed in site-directed mutagenesis experiments. The exchange matrices should provide guidelines for "safe" amino acid substitutions least likely to disturb the protein structure, either locally or in its overall folding pathway, and most likely to allow probing the structural and functional significance of the substituted site.  相似文献   

9.
Cysteine (Cys) is an enigmatic amino acid residue. Although one of the least abundant, it often occurs in the functional sites of proteins. Whereas free Cys is a polar amino acid, Cys in proteins is often buried, and its classification on the hydrophobicity scale is ambiguous. We hypothesized that the deviation of Cys residues from the properties of a free amino acid is due to their reactivity and addressed this possibility by examining Cys in large protein structure data sets. Compared to other amino acids, Cys was characterized by the most extreme conservation pattern, with the majority of Cys being either highly conserved or poorly conserved. In addition, clustering of Cys with another Cys residue was associated with high conservation, whereas exposure of Cys on protein surfaces was associated with low conservation. Moreover, although clustered Cys behaved as polar residues, isolated Cys was the most buried residue of all, in disagreement with known chemical properties of Cys. Thus, the anomalous hydrophobic behavior and conservation pattern of Cys can be explained by elimination of isolated Cys from protein surfaces during evolution and by clustering of other Cys residues. These findings indicate that Cys abundance is governed by Cys function in proteins rather than by the sheer chemical-physical properties of free amino acids, and suggest that a high tendency of Cys to be functionally active can considerably limit its abundance on protein surfaces.  相似文献   

10.
Despite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R696 (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R696, it was mutated to K, A, I, L, D, E, N, and Q. Most of these substitutions did not affect the expression, processing or surface distribution of the envelope protein (Env). However, a syncytia formation assay showed that the substitution of R696 with amino acid residues other than K, a naturally observed mutation in the gp41 MSD, decreased fusion activity. Substitution with hydrophobic amino acid residues (A, I, and L) resulted in a modest decrease, while substitution with D or E, potentially negatively-charged residues, almost abolished the syncytia formation. All the fusion-defective mutants showed slower kinetics with the cell-based dual split protein (DSP) assay that scores the degree of membrane fusion based on pore formation between fusing cells. Interestingly, the D and E substitutions did show some fusion activity in the DSP assays, suggesting that proteins containing D or E substitutions retained some fusion pore-forming capability. However, nascent pores failed to develop, due probably to impaired activity in the pore enlargement process. Our data show the importance of this conserved arginine residue for efficient membrane fusion.  相似文献   

11.
The sensitivity of bacteriophage T4 lysozyme function to amino acid substitutions at defined positions in and around the longitudinal, hydrophobic strips of 9 alpha-helices was assessed after systematic replacement of each residue in the protein with a series of 13 amino acids. The hydrophobic strips were defined by identifying the longitudinal sectors in the helices with the highest mean residue hydrophobicities. Sensitivity to mutation (the percentage of replacements leading to loss of function) was calculated for each residue in the following positions: whole protein, helices, hydrophobic strips, other positions within the helices, and various positions within the hydrophobic strips as well as their extensions beyond the helices. Substitutions at positions in the hydrophobic strips led more frequently to loss of function than substitutions in the protein as a whole. One subset, the COOH-terminal hydrophobic strip residues, is apparently critical; substitutions of these residues (but not of their NH2-terminal counterparts) led at least as frequently to loss of function as substitutions of solvent-inaccessible residues, and nearly as frequently as substitutions of the most highly conserved residues.  相似文献   

12.
The tat gene of HIV-1 is a potent trans-activator of gene expression from the HIV long terminal repeat (LTR). To define the functionally important regions of the product of the tat gene (Tat) of HIV-1, deletion, linker insertion and single amino acid substitution mutants within the Tat coding region of strain SF2 were constructed. The effect of these mutations on trans-activation was assessed by measuring the expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene linked to the HIV-LTR. These studies have revealed that four different domains of the protein that map within the N-terminal 56 amino acid region are essential for Tat function. In addition to the essential domains, an auxiliary domain that enhances the activity of the essential region has also been mapped between amino acid residues 58 and 66. One of the essential domains maps in the N-terminal 20 amino acid region. The other three essential domains are highly conserved among the various strains of HIV-1 and HIV-2 as well as simian immunodeficiency virus (SIV). Of the conserved domains, one contains seven Cys residues and single amino acid substitutions for several Cys residues indicate that they are essential for Tat function. The second conserved domain contains a Lys X Leu Gly Ile X Tyr motif in which the Lys residue is essential for trans-activation and the other residues are partially essential. The third conserved domain is strongly basic and appears to play a dual role. Mutants lacking this domain are deficient in trans-activation and in efficient targeting of Tat to the nucleus and nucleolus. The combination of the four essential domains and the auxiliary domain contribute to the near full activity observed with the 101 amino acid Tat protein.  相似文献   

13.
Site-specific in vitro mutagenesis was used to direct various amino acid substitutions at conserved positions within the sequence of human interferon-alpha 1 (IFN-alpha 1). The antiviral specific activity of IFN-alpha 1, expressed in M13 as a fusion protein [IFN-alpha 1 (phi WT)], could be altered by single amino acid substitutions. The substitution of glycine for tyrosine at position 123 results in a loss of more than 99% of the antiviral specific activity on human cells, but causes no significant change in the antiviral specific activity on primary bovine cells. The tyrosine at position 123 is thus implicated in determining human cell specificity. Based on analysis of IFN-alpha 2, IFN-alpha 1 contains two dulsulphide bridges between cysteine residues 29 and 139 and cysteine residues 1 and 99. IFN-alpha 1 also contains a fifth cysteine residue at position 86. IFN-alpha 1 (phi WT) carrying three serine for cysteine substitutions at positions 1, 86 and 99 retains 23% of the antiviral specific activity of IFN-alpha 1 (phi WT) on human cells. However, the antiviral activity on bovine cells is not significantly affected by this modification. The presence of the disulphide bridge between residues 1 and 99 thus appears to be required for full antiviral activity on human but not bovine cells. A single serine for cysteine substitution at position 29 reduces the antiviral specific activity on both human and bovine cells by some 95%. This data shows that the disulphide bridge between residues 29 and 139 is critical for the antiviral activity of IFN-alpha's.  相似文献   

14.
Rabbit, mouse, and guanaco cytochromes c differ from each other by only two amino acid residues. The identification is described of all of the antigenic determinants of mouse and guanaco cytochrome c that elicit an antibody response in rabbits, and those of the rabbit and guanaco proteins that elicity antibodies in the mouse. All except one of these sites center around single amino acid residue differences between the antigen and the host cytochrome c. The corresponding antibody popylations bind only to the areas of the protein in which the substitutions occur. Such antigenic determinants manifested in rabbits by quanaco and mouse cytochromes c are centered around residues 62 and 89, and residues 44 and 89, respectively. Similarly, the mouse recognizes sites containing residues 44 and 62 in guanaco cytochrome c, and residues 44 and 89 in rabbit cytochrome c. In none of these instances has a change in sequence failed to produce an antibody response. Each of these determinants appears to elicit and bind to its antibody, independently of other determinants present on the protein. In addition, two different autoantigenic responses have been detected. The antibodies produced against the determinant formed by glutamyl residue 62 of the guanaco protein in both rabbits and mice, the cytochromes c of which carry an aspartyl residue in that position, also bind to the aspartyl-containing region but with lower affinity. However, mouse and rabbit cytochrome c also elicit antibodies to the area of residue 62 in rabbits and mice, respectively, and these antibodies still bind more strongly to the glutamyl-than to the aspartyl-containing determinant. This last response occurs only when there are residue substitutions elsewhere in the molecule, because mice and rabbits fail to respond to their own cytochrome c. Antibodies produced in mice against the change from alanyl to valyl residue 44 by rabbit and guanaco cytochromes c also bind to the alanyl-containing determinant, except less tightly than to the valyl region. Conversely, antibodies raised in rabbits against the change from valyl to alanyl residue 44 only bind to this region when it carries an alanine. It is suggested that antigenic determinants that arise as a result of amino acid residue substitutions between the immunizing and the corresponding host protein, without a change in the spatial arrangement of the polypeptide backbone, be termed topographic determinants.  相似文献   

15.
Ras proteins bind either GDP or GTP with high affinity. However, only the GTP-bound form of the yeast Ras2 protein is able to stimulate adenylyl cyclase. To identify amino acid residues that play a role in the conversion from the GDP-bound to the GTP-bound state of Ras proteins, we have searched for single amino acid substitutions that selectively affected the binding of one of the two nucleotides. We have found that the replacement of glycine-82 of the Ras2 protein by serine resulted in an increased rate of dissociation of Gpp(NH)p, a nonhydrolysable analog of GTP, while the GDP dissociation rate was not significantly modified. Glycine-82 resides in a region that is highly conserved between the yeast and human proteins. However, this residue is structurally distant from residues that participate in the binding of the nucleotide, as determined from the crystal structure of the human H-ras gene product. Therefore, the ability of the nucleotide binding site to discriminate between GDP and GTP is dependent not only on residues that are spatially close to the nucleotide, but also on distant amino acids. This is in agreement with the role of glycine-82 as a pivot point during the transition from the GDP- to the GTP-bound form of the Ras proteins.  相似文献   

16.
M A Soto  J Tohá 《Origins of life》1983,13(2):147-152
Based on a similarity ring constructed from a substitution probability matrix, we have analyzed the conservation of some amino acid properties in the evolution of proteins. Refractive index and bulkiness are highly conserved, hydrophobicity and polarity are fairly well conserved while optical rotation appears to be a less relevant property. On the other hand, the analysis of the correspondence between phenotype and genotype shows that the most frequent amino acid substitutions in proteins do not always correspond to the most feasible codon changes. The apparent disagreement between amino acid substitutions in modern proteins and the primordial amino acid-codon assignment is discussed.  相似文献   

17.
Human apolipoprotein (apo) A-IV is a polymorphic plasma protein controlled by two codominant alleles at a single genetic locus. Thus far, five different isoproteins (apoA-IV-0 to apoA-IV-4) have been described in Caucasians. We have recently identified the nucleotide and amino acid substitutions that are the basis for the most common isoproteins, apoA-IV-1 and apoA-IV-2. In this report, the mutations producing the two rare isoproteins apoA-IV-0 and apoA-IV-3 are described. Analysis of the apoA-IV-0 allele revealed an insertion of 12 nucleotides in a carboxyl-terminal region, which is highly conserved among human, rat, and mouse A-IV apolipoproteins. This in-frame insertion of the 4 amino acids Glu-Gln-Gln-Gln between residues 361 and 362 of the mature protein produces the 1 charge unit more acidic apoA-IV-0 isoprotein (pI 4.92). In the apoA-IV-3 allele we identified a single G to A substitution that converts the glutamic acid (GAG) at position 230 of the mature protein to a lysine (AAG), thus adding 2 positive charge units to the apoA-IV-1 isoprotein (pI 4.97) and forming the more basic apoA-IV-3 isoprotein (pI 5.08). Comparison with the mouse and rat A-IV apolipoproteins revealed that this residue, located at position 4 of the 10th/11th amphiphilic alpha-helical repeat, is also highly conserved in evolution.  相似文献   

18.
The structural divergence between the cytoplasmic isoenzymes of aldehyde dehydrogenase from different species was investigated by analysis of peptides from the horse protein, and correlation of the results with the complete primary structure of the human isoenzyme. The amino acid sequences of these two proteins show a high degree of homology (91% of residues compared are identical). The differences observed are spread over the entire polypeptide chains, with only one cluster, which is close to a reactive cysteine residue and also adjacent to the most conserved region (covering 68 residues) in the primary structures of the whole enzymes. The secondary structure predicted for the human isoenzyme is mainly unaffected by the residue differences in the horse isoenzyme, although limited conformational changes might be compatible with an unexpected overrepresentation of differences involving isoleucine (12 of 43 exchanges represent a loss of Ile in the horse protein). Two cysteine residues that correlate with catalytic activity are identically positioned in the enzyme from the two species.  相似文献   

19.
Contributions of alpha-helices to biological activity in murine granulocyte-macrophage colony-stimulating factor were analyzed using site-directed mutagenesis and protein expression in COS-1 cells. A series of single proline substitutions were made for residues within the four predicted alpha-helices as a means of disrupting local helical secondary structure. Mutations in three of the four helices resulted in marked reductions in bioactivity. Five mutants E21P, L56P, E60P, L63P, and L107P showed 10(2)-10(4)-fold reduction in bioactivity as well as hyperglycosylation. The same Pro substitutions made on non-N-glycosylated molecules had a similar loss in bioactivity implying that a Pro-induced structural change and not hyperglycosylation was responsible for the major decrease in bioactivity. Additional amino acid substitutions at these residues which conserved charge or hydrophobicity, or replaced the original residue with an Ala, verified that conformational changes in the protein structure were specifically due to steric constraints imposed by the Pro residue rather than loss of important side chain functions.  相似文献   

20.
A missense mutation at cysteine 706, resulting in a retinoblastoma (RB) protein defective in phosphorylation and oncoprotein binding, has been isolated from a human tumor cell line. Since this residue is conserved in murine RB and in the related p107 protein, we studied the activity of in vitro mutants flanking this position. These experiments demonstrated that the thiol atom at codon 706 does not possess intrinsic functional activity as small polar or nonpolar residues could substitute at either codons 706 or 707, while bulkier R-group changes in these positions interfered with in vitro oncoprotein binding or in vivo protein phosphorylation. A series of missense mutants in an adjacent leucine repeat domain also demonstrated a loss of oncoprotein binding that was proportional to the magnitude of amino acid substitutions. To determine whether the cysteine 706 --> phenylalanine RB mutant retained any protein binding activity, we examined its ability to precipitate MYC, which was recently identified as a potential RB-associated protein. These experiments demonstrated that the mutant RB product is capable of binding in vitro to c-myc and L-myc proteins with comparable affinity as wild-type RB. These findings raise questions about the functional role of the RB:MYC interactions and emphasize important differences in the binding patterns between MYC and the other RB-associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号