首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mary  Whitear 《Journal of Zoology》1974,172(4):503-529
In the epidermis of frog skin, most nerves are situated at the top of the basal layer. More superficial nerve fibres are usually adjacent to flask cells; it is concluded that this is not a functional association, but a consequence of the pattern of moulting. There are nerve fibres in the walls of the granular glands; mucous glands appear to have no intrinsic innervation although nerves pass within a short distance of their walls. The smooth muscle bundles of the dermis are innervated, and have a physical attachment to the overlying epidermis.  相似文献   

2.
The gross morphology, histology and ultrastructure of the canary's incubation patch and the ventral apterium from which it arises are described. The apterium is vascularized by pectoral, external mammary, incubation, and prepubic arteries. It is innervated by cutaneous branches of spinal nerves. It has a surface area of 6 cm2. Its epidermis is a stratified squamous epithelium with basal, intermediate, transitional and cornified layers. Cells in the stratum germinativum contain a normal array of organelles, but are characterized by tonofilaments, desmosomes and interdigitating surfaces. Cellular organelles disappear in the stratum transitivum and are replaced by large vacuoles and keratohyalin bands. Nonmyelinated nerve fibers are abundant in the stratum germinativum. The dermis consists of (1) an avascular layer of dense collagen subjacent to the epidermis and containing many nonmyelinated nerves, and (2) an underlying layer of areolar connective tissue containing blood vessels, lamellar corpuscles and nerves. A layer of coarse elastic fibers, reinforced by collagen and smooth muscle, separates the dermis from subcutaneous tissue. In contrast to the ventral apterium, the incubation patch is featherless and visibly hypervascular and edematous. Its epidermis is both hypertrophic and hyperplastic. Large spaces separate cells in the stratum germinativum. The visible hypervascularity is due to hyperemia and increased number and size of blood vessels in the dermis. Visible edema is due to the accumulation of fluid interstitially. Although no histological differences exist among various regions of the ventral apterium, such differences are present in the incubation patch.  相似文献   

3.
Summary The presence of calcitonin gene-related peptide (CGRP) in the skin of pig snout and human fingertip was investigated using immunohistochemical techniques. CGRP immunoreactivity was found in Merkel cells and nerve fibres of both species. In pig snout skin, Merkel cells containing CGRP were seen forming clusters at the tips of rete ridge epidermis and in the external root sheath of sinus hair follicles (vibrissae). Human Merkel cells immunostained for CGRP were found isolated or forming small groups in the basal layer of glandular epidermal ridges. In all cases, immunoreactivity was more intense on the side of the Merkel cell facing the associated nerve terminal (which was never positive for CGRP). This part of the Merkel cell has the greatest density of dense-cored granules, suggesting that CGRP must be stored in these granules. Nerve, bundles containing CGRP-immunoreactive fibres were found at dermal and hypodermal level, and blood vessels were often surrounded by CGRP nerve fibres. In pig snout skin some nerve fibres containing CGRP penetrated the epidermis and terminated as free endings, and in the human fingertip a small number of CGRP-immunoreactive nerve fibres were seen in Meissner's corpuscles.  相似文献   

4.
The presence of calcitonin gene-related peptide (CGRP) in the skin of pig snout and human fingertip was investigated using immunohistochemical techniques. CGRP immunoreactivity was found in Merkel cells and nerve fibres of both species. In pig snout skin, Merkel cells containing CGRP were seen forming clusters at the tips of rete ridge epidermis and in the external root sheath of sinus hair follicles (vibrissae). Human Merkel cells immunostained for CGRP were found isolated or forming small groups in the basal layer of glandular epidermal ridges. In all cases, immunoreactivity was more intense on the side of the Merkel cell facing the associated nerve terminal (which was never positive for CGRP). This part of the Merkel cell has the greatest density of dense-cored granules, suggesting that CGRP must be stored in these granules. Nerve bundles containing CGRP-immunoreactive fibres were found at dermal and hypodermal level, and blood vessels were often surrounded by CGRP nerve fibres. In pig snout skin some nerve fibres containing CGRP penetrated the epidermis and terminated as free endings, and in the human fingertip a small number of CGRP-immunoreactive nerve fibres were seen in Meissner's corpuscles.  相似文献   

5.
In the chicken Merkel corpuscles are located in the dermis and consist of specialized Merkel cells, discoid nerve endings and lamellar cells. Merkel cells contain characteristic membrane-bound dense-core granules and bundles of microfilaments. Asymmetric junctions, synapse like, with thickened membranes and clusters of dense-core vesicles were observed between the Merkel cells and the nerve endings. The nerve ending is derived from myelinated nerves and sometimes contains clusters of clear vesicles. A laminar system formed by lamellar cells of the Schwann cell type encloses the Merkel cells and the nerve endings. So called "transitional" cells, showing some of the morphological features of both keratinocytes and Merkel cells, were observed in the basal layer of the epidermis. One was located partly in the epidermis and partly in the dermis. The structure of Merkel corpuscles is compared with that of Merkel cells in other tetrapods. The developmental significance of "transitional" cells and the origin of Merkel cells are discussed.  相似文献   

6.
Summary Merkel cells in the lower labial mucosa of adult rabbits were studied electron microscopically, 9, 21, 28, and 50 days after resection of the mental nerves. By day 9, nerve fibers were completely retracted from the epithelial layer of the mucosa. On and after day 21, Merkel cells were located not only in the basal layer but also in the prickle or more superficial cell layers. The ultrastructure of the migrating Merkel cells was unchanged, both as to the amount and location of the specific cored granules in the cytoplasm, until the cells reached the granular cell layer. The position of the migrating Merkel cells differed from cell to cell, and migration continued for at least 50 days. A remarkably large number of immature Merkel cells was observed in the basal and suprabasal cell layers of the denervated epithelium even by day 50. Therefore, the possibility of the reproduction of Merkel cells exists. The migrating Merkel cells, as well as the keratinocytes in the same cell layer, had degenerated drastically in the parakeratinized cell layer. This seems to indicate that the Merkel cells belong to the line of keratinocytes.  相似文献   

7.
The intraepidermal innervation of the snout skin of the opossum has been studied with the light and electron microscope. Numerous large nerve fibers loose their myelin sheath in the superficial dermis and pass into the epidermis. The basement membranes of the epidermis and Schwann cell become continuous at the point of entry of the neurite into the epidermis. Within the epidermis, the neurite is associated with a specialized secretory epidermal cell, termed a Merkel cell. This cell has many secretory granules apposed to the neurite. The Merkel cells are epidermal cells since they have desmosomes between them and adjacent epidermal cells. The neurite in the stratum spinosum is enveloped by Schwann cells in a manner analogous to the Schwann cell investment of unmyelinated neurites. In the upper stratum spinosum the nerve fiber evidences changes which can be interpreted as degenerative. The Merkel cell-neurite complex is interpreted as representing a sensory receptor unit.  相似文献   

8.
The distribution of nerves and cholinesterase activity in the skin of the desert and albino rats has been studied using both histological and histochemical techniques. In the desert rat, the skin was richly innervated. Specific cholinesterase was concentrated in the nervous network of the dermis and around the hair follicles, in the nerve bundles of the dermis, in perivascular nerves, in fine intra-epithelial nerves and in sensory end organs in the junctional area between the dermis and epidermis. In the albino rat, specific cholinesterase was concentrated in the sebaceous glands. The positive cholinesterase activity that was seen in the desert rat in intra-epithelial nerves, and in dermal and hair follicle networks could not be demonstrated.  相似文献   

9.
Summary The epidermal Merkel cells and their sensory innervation serve tactile sensation in vertebrates. In this study the fluorescent cationic mitochondrial dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide (4-Di-2-ASP), which has recently been used as a vital stain for motor and autonomic nerve terminals, was tested for its ability to stain Merkel cells and sensory fibers in the snout of the rat. Brightly-fluorescent structures resembling Merkel cells as well as nerve fibers and their terminations were evident in whole mounts of the vibrissal follicle. Unilateral denervation of the vibrissal follicles soon after birth resulted in a staining pattern remarkably similar to that obtained after labelling of the Merkel cells selectively with the fluorescent marker quinacrine, but all fiber staining was abolished. Likewise, in the separated epidermis of other skin regions, including the hairy and glabrous skin of the nose, the staining pattern revealed by 4-Di-2-ASP was indistinguishable from that obtained by quinacrine fluorescence. These results indicate that certain styryl pyridinium dyes may be used as vital stains for epidermal Merkel cells as well as cutaneous mechanosensory axons.  相似文献   

10.
The work has been performed on Wistar rats and non-inbred animals. Their ischiatic nerves have been dissected at the femoral superior third under nembutal narcosis. The end of the sectioned nerve are connected by a fragment of an aorta from rats of the same age. The state of nervous elements and dermal epithelium of the hind extremity sole in the animals is studied by means of general histological and neurohistological techniques. Mitotic activity of cells in the plantar epidermis, thickness as a whole and its separate layers are estimated, keratinization coefficient and correlation of thickness of separate sheaths in the whole layer are calculated. Use of the arterial vessels for connecting the end of the cut ischiatic nerve, trophic ulcers, that usually take place after the nerve section, do not develop. At early stages after the operation mitotic activity in the epidermis decreases by 70%, and the layer thickness--by 40%. Restoration of both indices proceeds slowly. As soon as the regenerating nerve fibers reach the distal part of the ischiatic nerve, the state of the epidermis improves: the mitotic activity differs from the normal by 20-30%, and thickness of the epithelium--by 28-30%. Coordination of thickness of separate layers in the epidermis is not nearly disturbed. It remains in the same state up to complete restoration of receptory structures in the rat plantar skin (during 9-9.5 months after the operation).  相似文献   

11.
The location and distribution of neural crest-derived Schwann cells during development of the peripheral nerves of chick forelimbs were examined using chick-quail chimeras. Neural crest cells were labeled by transplantation of the dorsal part of the neural tube from a quail donor to a chick host at levels of the neural tube destined to give rise to brachial innervation. The ventral roots, spinal nerves, and peripheral nerves innervating the chick forelimb were examined for the presence of quail-derived neural crest cells at several stages of embryonic development. These quail cells are likely to be Schwann cells or their precursors. Quail-derived Schwann cells were present in ventral roots and spinal nerves, and were distributed along previously described neural crest migratory pathways or along the peripheral nerve fibers at all stages of development examined. During early stages of wing innervation, quail-derived Schwann cells were not evenly distributed, but were concentrated in the ventral root and at the brachial plexus. The density of neural crest-derived Schwann cells decreased distal to the plexus, and no Schwann cells were ever seen in advance of the growing nerve front. When the characteristic peripheral nerve branching pattern was first formed, Schwann cells were clustered where muscle nerves diverged from common nerve trunks. In still older embryos, neural crest-derived Schwann cells were evenly distributed along the length of the peripheral nerves from the ventral root to the distal nerve terminations within the musculature of the forelimb. These observations indicate that Schwann cells accompany axons into the developing limb, but they do not appear to lead or direct axons to their targets. The transient clustering of neural crest-derived Schwann cells in the ventral root and at places where axon trajectories diverge from one another may reflect a response to some environmental feature within these regions.  相似文献   

12.
The fine structure of the tail skin oflarval Neoceratodusforsteri , between stages 40 and 50 (Kemp, 1982), is described and where applicable specific cellular components are compared and contrasted with comparable ones in the skin of adult dipnoans, teleosts and larval and adult amphibians.
The epidermis of the early developing tail, within the range studied, differentiates a variety of different cell types. Surface epithelial lucent and vacuolated lucent cells and basal cells are distinguished, and goblet (mucous) cells, Merkel cells and macrophages appear in the epidermis towards the end of the series.
Below a poorly developed collagenous basement lamella, immature melanophores with premelanosomes are present, and likewise there are non–myelinated nerves, some striated muscle fibres, capillaries and mesenchymal fibroblasts.
The tail epidermis is innervated by naked neurites from the beginning of the series, and the earliest recognizable Merkel cell is in synaptic association with neurites.  相似文献   

13.
Using antibodies to the neuronal cytoplasmic protein, protein gene product 9.5 (PGP 9.5) the cutaneous innervation in man was investigated. The distribution of PGP 9.5 immunoreactive nerve fibers was compared with the distribution of nerve fibers immunoreactive to neuron specific enolase, neurofilament proteins, calcitonin gene related peptide, vasoactive intestinal polypeptide and neuropeptide Y. PGP 9.5 immunoreactive nerve fibers were found in the epidermis, dermis, in Meissner's corpuscles, innervating Merkel cells, around blood vessels, sweat glands and hair follicles. Merkel cells were also PGP 9.5 positive. The labelled nerve fibers included sensory and autonomic fibers, visualizing the whole innervation of the human skin. The number of positive fibers and the intensity of the fluorescence was greater with PGP 9.5 antibodies than with any of the other markers included. Thus, PGP 9.5 antibodies may serve as a tool for investigations of cutaneous innervation, reinnervation and nerve regeneration in different clinical conditions.  相似文献   

14.
Summary Using antibodies to the neuronal cytoplasmic protein, protein gene product 9.5 (PGP 9.5) the cutaneous innervation in man was investigated. The distribution of PGP 9.5 immunoreactive nerve fibers was compared with the distribution of nerve fibers immunoreactive to neuron specific enolase, neurofilament proteins, calcitonin gene related peptide, vasoactive intestinal polypeptide and neuropeptide Y. PGP 9.5 immunoreactive nerve fibers were found in the epidermis, dermis, in Meissner's corpuscles, innervating Merkel cells, around blood vessels, sweat glands and hair follicles. Merkel cells were also PGP 9.5 positive. The labelled nerve fibers included sensory and autonomic fibers, visualizing the whole innervation of the human skin. The number of positive fibers and the intensity of the fluorescence was greater with PGP 9.5 antibodies than with any of the other markers included. Thus, PGP 9.5 antibodies may serve as a tool for investigations of cutaneous innervation, reinnervation and nerve regeneration in different clinical conditions.  相似文献   

15.
Merkel cells appear in the epidermis of planum nasale of the rat fetuses from the 16th day of i. u. development, namely in the 2nd-3rd layer of epidermal cells. Nerve fibres appear in the subepidermal connective tissue from the 20th day of i.u. development. Long cytoplasmic processes filled in with specific dense core vesicles grow from Merkel cells against them. Intraepidermally, nerve fibres appear in postnatal period (from 3rd day after birth). Granular vesicles of Merkel cells probably have the leading role in the formation and maintenance of contacts between Merkel cell and the nerve ending. The results of studying ontogenetic development of Merkel cells in the rat are favour of hypothesis about the differentiation of Merkel cells in the epidermis, however, the possibility of secondary equipment of epidermis with Merkel cells independently on the development of nerve fibres is not eliminated.  相似文献   

16.
Distribution of neurofilament-immunoreactive nerve fibers in human skin   总被引:1,自引:0,他引:1  
Neurofilament immunoreactive nerve fibers were demonstrated in human skin using indirect immunohistochemical technique with antibodies to neurofilament polypeptides. Neurofilament-positive fibers were seen as free nerve endings in the epidermis and in dermal papilla, in Meissner's corpuscles and as fibers crossing in the dermis. Strongly fluorescent nerve fibers were also seen around hair follicles, sweat gland ducts and sometimes in relation to blood vessels. From the distribution pattern it was concluded that predominantly sensory nerve fibers were labelled and that this technique may be used to study reinnervation of cutaneous sensory nerves following traumatic injuries and surgical procedures.  相似文献   

17.
Merkel cells have been assumed to guide nerve fibers to the skin. However, there has been little in vitro evidence that supports this hypothesis, because there is no suitable established culture system of Merkel cells. Here we show that Merkel cells isolated from rat footpad skin were successfully cultured in a monolayer with keratinocytes. Keratinocytes did not affect any structural changes in Merkel cells. When nerve cells (NG108-15 or PC12) were added to the culture system, both nerve fibers and cytoplasmic processes of Merkel cells outgrew and cooperatively organized synapse-like structures at their contact points. Nerve cells promoted Merkel cell survival, compared with keratinocytes only. Merkel cell proliferation was not detected in all conditions, even with nerve growth factor, neurotrophin-3, interleukin-6 and tumor necrosis factor-alpha. The data suggest, firstly, that Merkel cells may guide nerve fibers to the skin by interacting with nerve cells; and, secondly, that nerve cells, but not keratinocytes, may produce some survival factors other than the cytokines above for Merkel cells, although Merkel cells may be a terminally differentiated cell type. Our method could open a way to study Merkel cell biology.  相似文献   

18.
The distribution of Merkel cells in fetal and adult terminal hair follicles of human scalp was studied immunohistochemically using cytokeratin (CK) 20 as a specific Merkel cell marker. In hair follicles of adult scalp, abundant Merkel cells were found enriched in two belt-like clusters, one in the deep infundibulum and one in the isthmus region. No Merkel cells were found in the deep follicular portions including the bulb, or in the dermis. In early fetal hair follicles (bulbous peg stage), Merkel cells were only detected in the basal layer of the developing infundibulum but not in deeper follicular areas. In later stages, Merkel cells were also present in the isthmus and bulge. No Merkel cells were seen in the dermis around developing hair follicles. Nerve growth factor receptor was not only present in nerves but was found to be widely distributed within fetal skin. In adult skin, this receptor was localized to the basal cell layers of the outer root sheath of the bulb and the suprabulbar area, but was not detectable in the areas containing Merkel cells. The present study localizing Merkel cells within the permanent hair follicle structures close to their possible stem cells suggests that they have paracrine functions.  相似文献   

19.
Target-derived influences of nerve growth factor on neuronal survival and differentiation are well documented, though effects of other neurotrophins are less clear. To examine the influence of NT-3 neurotrophin overexpression in a target tissue of sensory and sympathetic neurons, transgenic mice were isolated that overexpress NT- 3 in the epidermis. Overexpression of NT-3 led to a 42% increase in the number of dorsal root ganglia sensory neurons, a 70% increase in the number of trigeminal sensory neurons, and a 32% increase in sympathetic neurons. Elevated NT-3 also caused enlargement of touch dome mechanoreceptor units, sensory end organs innervated by slowly adapting type 1 (SA1) neurons. The enlarged touch dome units of the transgenics had an increased number of associated Merkel cells, cells at which SA1s terminate. An additional alteration of skin innervation in NT-3 transgenics was an increased density of myelinated circular endings associated with the piloneural complex. The enhancement of innervation to the skin was accompanied by a doubling in the number of sensory neurons expressing trkC. In addition, measures of nerve fibers in cross- sectional profiles of cutaneous saphenous nerves of transgenics showed a 60% increase in myelinated fibers. These results indicate that in vivo overexpression of NT-3 by the epidermis enhances the number of sensory and sympathetic neurons and the development of selected sensory endings of the skin.  相似文献   

20.
We have investigated in the salamander the possibility that regenerating mechanosensory nerves might prefer the epidermal Merkel cells (their specific targets) that are located within their segmental domain to those within a "foreign" domain. Since regerating nerves cross domain boundaries with no evidence of the marked delay exhibited by intact sprouting nerves, we examined situations in which the regenerating axons of one segmental nerve were effectively in equal competition for denervated skin with those of another segmental nerve. Additionally, we investigated whether there were differences between regenerating axons and intact sprouting axons of the same segmental nerve, in their ability to innervate available skin both inside and outside the parent domain. No preference was detected of any type of nerve, regenerating or intact, for particular skin regions, or for Merkel cells as indicated by the numbers of mechanosensory thresholds of the touch spots that developed in reinnervated skin. Neither was there any indicating of displacement of "foreign" nerves from a particular region by appropriate axons. When regenerating and intact (sprouting) axons invaded denervated skin more or less simultaneously, the former appeared to have a slight advantage since a significantly greater proportion of skin was innervated by regenerated fibres. With this one exception, all the results were explained most simply by assuming that the axon that first arrives at a denervated Merkel cell establishes a permanent association with that cell and at the same time causes it to lose its "target character" for other axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号