首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Hakamata  J Nakai  H Takeshima  K Imoto 《FEBS letters》1992,312(2-3):229-235
The complete amino acid sequence of a novel ryanodine receptor/calcium release channel from rabbit brain has been deduced by cloning and sequence analysis of the cDNA. This protein is composed of 4872 amino acids and shares characteristic structural features with the skeletal muscle and cardiac ryanodine receptors. RNA blot hybridization analysis shows that the brain ryanodine receptor is abundantly expressed in corpus striatum, thalamus and hippocampus, whereas the cardiac ryanodine receptor is more uniformly expressed in the brain. The brain ryanodine receptor gene is transcribed also in smooth muscle.  相似文献   

2.
We have cloned and sequenced cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. The cDNA, 16,532 base pairs in length, encodes a protein of 4,969 amino acids with a Mr of 564,711. The deduced amino acid sequence is 66% identical with that of the skeletal muscle ryanodine receptor, but analysis of predicted secondary structures and hydropathy plots suggests that the two isoforms exhibit the same topology in both transmembrane and cytoplasmic domains. A potential ATP binding domain was identified at residues 2619-2652, a potential phosphorylation site at residue 2809, and potential calmodulin binding sites at residues 2775-2807, 2877-2898, and 2998-3016. We suggest that a modulator binding domain in the protein lies between residues 2619 and 3016. Northern blot analysis of mRNA from a variety of tissues demonstrated that the cardiac isoform is expressed in heart and brain, while the skeletal muscle isoform is expressed in both fast- and slow-twitch muscle. No ryanodine receptor mRNA was detected in extracts from smooth muscle or any other non-muscle tissue examined. The two receptors are clearly the products of separate genes, and the gene encoding the cardiac muscle ryanodine receptor was localized to chromosome 1.  相似文献   

3.
The complete amino acid sequence of the porcine cardiac muscarinic acetylcholine receptor has been deduced by cloning and sequencing the cDNA. The tissue location of the RNA hybridizing with the cDNA suggests that this muscarinic receptor species represents the M2 subtype.  相似文献   

4.
Molecular characterization of a functional cDNA for rat substance P receptor   总被引:37,自引:0,他引:37  
This paper describes the amino acid sequence of the rat substance P receptor and its comparison with that of the rat substance K receptor on the basis of molecular cloning and sequence analysis. From a rat brain cDNA library constructed with an RNA expression vector, we identified a cDNA mixture containing a functional substance P receptor cDNA by examining electrophysiologically a receptor expression following injection of the mRNAs synthesized in vitro into Xenopus oocytes. A receptor cDNA clone was then isolated by cross-hybridization with the bovine substance K receptor cDNA. The clone was confirmed by selective binding of substance P to the cloned receptor expressed in mammalian COS cells. The deduced amino acid sequence (407 amino acid residues) possesses seven putative membrane spanning domains and shows a sequence similarity to the members of G-protein-coupled receptors. The rat substance P and substance K receptors are very similar in both size and amino acid sequences, particularly in the putative transmembrane regions and the first and second cytoplasmic loops. This similarity is in marked contrast to the sequence divergence in the amino- and carboxyl-terminal regions and the third cytoplasmic loop. The observed sequence similarity and divergence would thus contribute to the expression of similar but pharmacologically distinguishable activities of the two tachykinin receptors.  相似文献   

5.
The complete amino acid sequence of a novel calcium channel (designated BII) from rabbit brain has been deduced by cloning and sequencing the cDNA. The BII calcium channel is structurally more closely related to the BI calcium channel than to the cardiac and skeletal muscle L-type calcium channels. Blot hybridization analysis of RNA from different tissues and from different regions of the brain shows that the BII calcium channel is distributed predominantly in the brain, being abundant in the cerebral cortex, hippocampus and corpus striatum.  相似文献   

6.
7.
Functional and molecular biological evidence exists for the expression of ryanodine receptors in non-muscle cells. In the present study, RT-PCR and 5'-rapid amplification of cDNA 5'-end (5'-RACE analysis) provided evidence for the presence of a type 1 ryanodine receptor/Ca2+ channel (RyR1) in diverse cell types. In parotid gland-derived 3-9 (epithelial) cells, the 3'-end 1589 nucleotide sequence for a rat RyR shared 99% homology with rat brain RyR1. Expression of this RyR mRNA sequence in exocrine acinar cells, endocrine cells, and liver in addition to skeletal muscle and cardiac muscle, suggests wide tissue distribution of the RyR1. Positive identification of a 5'-end sequence was made for RyR1 mRNA in rat skeletal muscle and brain, but not in parotid cells, pancreatic islets, insulinoma cells, or liver. These data suggest that a modified RyR1 is present in exocrine and endocrine cells, and liver. Western blot analysis showed L-type Ca2+ channel-related proteins in parotid acinar cells, which were of comparable size to those identified in skeletal and cardiac muscle, and in brain. Immunocytochemistry carried out on intact parotid acini demonstrated that the dihydropyridine receptor was preferentially co-localized with the IP3 receptor in the apical membranes. From these data we conclude that certain non-muscle cells express a modified RyR1 and L-type Ca2+ channel proteins. These receptor/channels may play a role in Ca2+ signaling involving store-operated Ca2+ influx via receptor-mediated channels.  相似文献   

8.
G E Shull  J Greeb  J B Lingrel 《Biochemistry》1986,25(25):8125-8132
Rat brain and kidney cDNA libraries were constructed and screened with a cDNA insert corresponding to the mRNA for the sheep kidney Na+,K+-ATPase catalytic subunit. The alpha-subunit cDNAs isolated from the kidney library were derived from a single class of messenger RNA, and the brain cDNAs were derived from three classes of messenger RNA. The most abundant brain cDNA, which spans 5.1 kilobases, encodes the alpha(+) form of the enzyme. The second most abundant brain cDNA, which spans 3.65 kilobases, is identical with that of the kidney form and therefore encodes the alpha isoform. The third class of cDNA, which spans 3.55 kilobases, was present at low abundance and encodes an isoform of the alpha-subunit, designated alpha III, which has not been identified previously. The complete nucleotide sequence and deduced amino acid sequence for each of the brain and kidney cDNAs have been determined. In addition, we have identified a lysine-rich sequence that may function as a movable, ion-selective gate during cation binding and occlusion and have also identified several amino acid sequence variations that appear to explain some of the well-known species and tissue differences in cardiac glycoside sensitivity.  相似文献   

9.
We have isolated cDNA clones of the mRNA for chick embryonic myosin light chain (MLC), L23, by cross-hybridization with chicken skeletal muscle MLC1 cDNA. The identification of the isolated cDNAs was carried out by in vitro translation of hybrid-selected mRNA. Sequence analysis of the cloned cDNAs revealed that the cDNA insert contained 832 nucleotides and predicted a polypeptide of 185 amino acids with a calculated molecular weight of 20,687. The deduced amino acid sequence for L23 showed high sequence similarities to those of adult alkali type MLCs from various tissues, indicating that L23 belongs to the alkali MLC group. Using the cloned cDNA as a hybridization probe, we have revealed by RNA blot analysis that the expression of L23 mRNA was regulated in temporal and tissue-specific manners. The L23 mRNA of 1.1 kilobases is transiently expressed in embryonic skeletal, cardiac, and smooth muscles of chickens. It is also found in the brain of chickens during all stages of development so far investigated. Only a single gene for L23 was detected by Southern blot of chick genomic DNA. We therefore suggest that L23 is expressed from a single gene in both embryonic muscles and brain.  相似文献   

10.
Molecular characterization of rat substance K receptor and its mRNAs   总被引:11,自引:0,他引:11  
The nucleotide sequence and the amino acid sequence for rat substance K receptor were deduced by molecular cloning and sequence analysis of its cDNAs. The rat substance K receptor consists of 390 amino acid residues and belongs to the family of G protein-coupled receptors. The comparison of the amino acid sequences of the rat and bovine substance K receptors indicated that they are highly homologous in the regions covering seven putative transmembrane domains, and this similarity is particularly remarkable in the transmembrane segments III and VII and their surrounding regions. RNA blot hybridization analysis showed that the rat substance K receptor is encoded by two species of mRNAs which differ in the lengths of the extreme 5' sequence of the 5'-untranslated regions. This analysis also indicated that the substance K receptor mRNAs are expressed in the gastrointestinal tract. Interestingly, no appreciable substance K receptor mRNAs were detected in poly(A)+ RNAs isolated from the brain and spinal cord, even though these tissues are known to not only contain substance K but also express the mRNA encoding the substance K precursor.  相似文献   

11.
Cysteine sulfinate decarboxylase (CSD) is considered as the rate-limiting enzyme in the biosynthesis of taurine, a possible osmoregulator in brain. Through cloning and sequencing of RT-PCR and RACE-PCR products of rat brain mRNAs, a 2,396-bp cDNA sequence was obtained encoding a protein of 493 amino acids (calculated molecular mass, 55.2 kDa). The corresponding fusion protein showed a substrate specificity similar to that of the endogenous enzyme. The sequence of the encoded protein is identical to that encoded by liver CSD cDNA. Among other characterized amino acid decarboxylases, CSD shows the highest homology (54%) with either isoform of glutamic acid decarboxylase (GAD65 and GAD67). A single mRNA band, approximately 2.5 kb, was detected by northern blot in RNA extracts of brain, liver, and kidney. However, brain and liver CSD cDNA sequences differed in the 5' untranslated region. This indicates two forms of CSD mRNA. Analysis of PCR-amplified products of genomic DNA suggests that the brain form results from the use of a 3' alternative internal splicing site within an exon specifically found in liver CSD mRNA. Through selective RT-PCR the brain form was detected in brain only, whereas the liver form was found in liver and kidney. These results indicate a tissue-specific regulation of CSD genomic expression.  相似文献   

12.
13.
DNA complementary to the bovine retinal mRNA coding for the beta-subunit of transducin has been cloned by screening a cDNA library with oligodeoxyribonucleotide probes. Nucleotide sequence analysis of the cloned cDNA has revealed that this polypeptide consists of 340 amino acid residues (including the initiating methionine). Furthermore, cDNA hybridizable with a transducin beta-subunit cDNA probe has been cloned from a library derived from bovine brain poly(A)+ RNA. Comparison of the cloned cDNAs, in conjunction with blot hybridization analysis and S1 nuclease mapping of poly(A)+ RNA from bovine retina, brain and liver, suggests that the mRNAs coding for the beta-subunits of transducin and other guanine nucleotide binding proteins have the same protein-coding sequence but partly different 5'-noncoding sequences.  相似文献   

14.
Excitatory amino acids (EAA) are major neurotransmitters in the vertebrate central nervous system. EAA receptors have been divided into three major subtypes on the basis of electrophysiological and ligand binding studies: N-methyl-D-aspartate, kainate, and quisqualate receptors. To understand their molecular properties, we undertook a project aimed at isolation and cloning of these receptor subtypes. We purified a kainate binding protein (KBP) from frog brain, in which kainate binding sites are about fortyfold more abundant than in rat brain, using domoic acid affinity chromatography, and made monoclonal and polyclonal antibodies to the purified protein. These antibodies immunoprecipitate the frog KBP but not KBPs from other species. Immunocytochemical analyses show that KBP has a synaptic and extrasynaptic localization in frog optic tectum, with most labeling being extrasynaptic. The cDNA encoding frog brain KBP was isolated by screening a frog brain cDNA library with oligonucleotide probes that were based on the amino acid sequence of the purified protein. The deduced amino acid sequence of the KBP has a hydrophobic profile similar to those of other ligand-gated ion channel subunits, such as the nicotinic acetylcholine receptor, the GABAA receptor, and the glycine receptor. Frog brain KBP is very similar (36% amino acid identity to the carboxyl half) to rat brain kainate receptor, suggesting that these two proteins evolved from a common ancestor. The function of KBP in frog brain remains a major question. Preliminary results showed that Xenopus laevis oocytes injected with KBP RNA did not produce a detectable electrophysiological response when perfused with kainate. These results suggest that additional subunits may be required to form a functional receptor or that KBP is not functionally related to a neurotransmitter receptor.  相似文献   

15.
Abstract: In this study, we describe the cloning and characterization of a soluble form of kynurenine aminotransferase (KAT, EC 2.6.1.7) present in rat brain. Soluble KAT was purified from rat kidney and the amino acid sequences of four tryptic peptides determined. These peptides were found to belong to the amino acid sequence reported for rat kidney soluble cysteine conjugate β-lyase, indicating that rat kidney KAT and β-lyase represent the same molecular entity. Oligonucleotide probes derived from the β-lyase cDNA were then used as primers for PCR of reverse-transcribed rat brain poly(A)+ RNA. After subcloning of the resulting PCR fragment and sequencing of the isolated rat brain clone, its oligonucleotide sequence was found to be identical to that reported for the β-lyase cDNA. Further evidence that the isolated rat brain clone encoded for KAT was obtained by transfecting HEK-293 cells with a construct containing the coding sequence for the enzyme. The transfected cells exhibited KAT activity and, in the presence of 2 m M pyruvate and 2-oxoglutarate, the K m values for l -kynurenine were 1.2 m M and 86.3 µ M , respectively. Northern blot analysis of rat kidney, liver, and brain RNA revealed a single species of KAT/β-lyase mRNA of ∼2.1 kb.  相似文献   

16.
Plasmids p749, p106, and p150 contain cDNA inserts complementary to rat skeletal muscle actin mRNA. Nucleotide sequence analysis indicates the following sequence relationships: p749 specifies codons 171 to 360; p150 specifies codons 357 to 374 together with 120 nucleotides of the 3'-non-translated region; p106 specifies the last actin amino acid codon, the termination codon and the entire 3' non-translated region. Plasmid p749 hybridized with RNA extracted from rat skeletal muscle, cardiac muscle, smooth (stomach) muscle, and from brain. It also hybridizes well with RNA extracted from skeletal muscle and brain of dog and chick. Plasmid p106 hybridized specifically with rat striated muscles (skeletal and cardiac muscle) mRNA but not with mRNA from rat stomach and from rat brain. It also hybridized to RNA extracted from skeletal muscle of rabbit and dog but not from chick. Thermal stability of the hybrids and sensitivity to S1 digestion also indicated substantial divergence between the 3' untranslated end of rat and dog skeletal muscle actins. The investigation shows that the coding regions of actin genes are highly conserved, whereas the 3' non-coding regions diverged considerably during evolution. Probes constructed from the 3' non-coding regions of actin mRNAs can be used to identify the various actin mRNA and actin genes.  相似文献   

17.
Protein and cDNA sequence analysis have revealed that the insulin-like growth factor (IGF-I) has been highly conserved among several mammalian species. Using the combined techniques of polymerase chain reaction and molecular cloning, we have now obtained the cDNA sequence encoding preproIGF-I from a teleost species, Oncorhynchus kisutch (coho salmon). The 2020 nucleotide (nt) cloned cDNA sequence contains a 528 nt open reading frame encoding 176 amino acids in preproIGF-I and 175 nt and 1317 nt of flanking 5'- and 3'-untranslated regions, respectively. The deduced amino acid sequence of salmon IGF-I is highly conserved relative to its mammalian homologues and there are only 14 amino acid differences out of 70 between salmon and human IGF-I. Interestingly, the C-terminal E domain of salmon proIGF-I, which is presumed to be proteolytically cleaved during biosynthesis, also shows striking amino acid sequence homology with its mammalian counterpart, except for an internal 27 residue segment that is unique to salmon proIGF-I. Northern analysis revealed that salmon preproIGF-I mRNA consists predominantly of a single 3900 nt sized band although minor bands were also observed after prolonged autoradiographic exposure. The RNA analysis also revealed that the level of preproIGF-I mRNA is increased 6-fold in liver RNA isolated from salmon injected with bovine GH, as compared to untreated controls. These results demonstrate that the primary structure and regulated expression of IGF-I by GH have been conserved in teleosts.  相似文献   

18.
In addition to the selective amplification of cDNA from total RNA by the PCR method, the distinctive properties of ferredoxin-expressing colonies can be used for cloning a ferredoxin cDNA. This strategy for cloning and expressing cDNA in E. coli was applied to a sheep adreno-ferredoxin. The expressed sheep ferredoxin showed a spectral pattern typical of [2Fe-2S] proteins. The amino acid sequence deduced from the DNA sequence showed that the mature form of sheep ferredoxin consists of 128 amino acid residues. This rapid and simple method for cloning and expressing cDNA can be applied to other ferredoxins.  相似文献   

19.
20.
The sequence of the mRNA for the rat substance P precursor (preprotachykinin A) has been elucidated by molecular cloning and sequence analysis. The deduced amino acid sequence of rat preprotachykinin A indicates that it contains both substance P and substance K but differs in the sequence organization from either bovine alpha- or beta-preprotachykinin A reported previously. The existence of the bovine mRNA for the third preprotachykinin A has thus been examined and evidenced by the isolation of the corresponding cDNA clone. This mRNA, named gamma-preprotachykinin A mRNA, deletes the sequence precisely corresponding to the exon 4 sequence of the preprotachykinin A gene. Thus, alternative RNA splicing in the expression of the single preprotachykinin A gene results in the generation of three different forms of the preprotachykinin A mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号