首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的和方法:采用全细胞式膜片钳技术,观察花生四烯酸(AA)对大鼠顶叶皮层神经元延迟整流钾电流(Ik)的影响。结果:①AA(10μmol/L)对大鼠顶叶皮层神经元Ik有抑制作用,抑制率为33.9%±8.74%(P<0.01)。②AA可使IK激活曲线的斜率因子变大且曲线向右移动,IK激活曲线的V1/2和k分别由给药前的(-55.3±0.9)mV和(10.3±0.4)mV,变为给药后的(-50.8±2.4)mV和(21.0±3.5)mV。③AA可使IK失活曲线斜率因子变大且曲线向左移动,IK失活曲线的V1/2和k分别由给药前的(-45.3±0.3)mV和(15.6±0.8)mV,变为给药后的(-70.9±1.9)mV和(36.5±2.1)mV。结论:花生四烯酸可抑制大鼠顶叶皮层神经元的延迟整流钾电流,并影响其动力学特征。  相似文献   

2.
Fu ZY  DU CY  Yao Y  Liu CW  Tian YT  He BJ  Zhang T  Yang Z 《生理学报》2007,59(1):63-70
利用全细胞膜片钳技术,在急性分离的新生大鼠海马CA3区锥体细胞上研究高效氯氰菊酯的两种组分高顺氯氰菊酯和高反氯氰菊酯对瞬时外向钾电流(transient outward potassiumcurrent,IA)和延迟整流钾电流(delayed rectifier potassiumcurrent,Ik)的影响。高顺氯氰菊酯使IA增大,而高反氯氰菊酯则使IA减小。高顺和高反氯氰菊酯均使IA激活曲线左移,反式结构还可促进IA的失活。高顺和高反氯氰菊酯均使IK减小,并使其激活曲线左移,而对IK的失活过程无影响,高反氯氰菊酯可使IK失活后恢复过程延长。结果表明,瞬时外向钾通道和延迟整流钾通道同样是高效氯氰菊酯的作用靶点,这可能是高效氯氰菊酯对哺乳动物产生毒性作用的原因之一。  相似文献   

3.
运用全细胞膜片钳技术研究二氧化硫衍生物对大鼠背根神经元瞬间外向钾电流(IA和ID)和延迟整流钾电流(IK)的影响。结果发现二氧化硫衍生物剂量依赖性地增大钾通道的电导,电压依赖性地增大钾电流的幅度,且这种增大作用部分可逆。二氧化硫非常显著地使延迟整流钾电流的激活过程向超极化方向移动,使瞬间外向钾电流的失活过程向去极化方向移动。10μmol/L二氧化硫衍生物作用前后,延迟整流钾电流的半数激活电压分别是(20.3±2.1)mV和(15.0±1.5)mV;IA和ID的半数失活电压分别朝去极化方向移动了6mV和7.4mV。这些结果表明二氧化硫改变了钾通道的特性,改变了神经元的兴奋性。  相似文献   

4.
Li YR  Yang BF  Xu CQ  Zhou J  Yang YB  Zhang JY  Sun MZ 《生理学报》2000,52(5):427-430
使用全细胞膜片箝技术, 研究RP62719对内向整流钾电流(IK1)、瞬时外向钾电流(Ito)和延迟外向整流钾电流(IK)的作用, 并探讨其抗心律失常作用的机制.实验结果表明, 在指令电压为-100 mV时, RP62719可显著抑制豚鼠心室肌细胞IK1, 半数抑制浓度(IC50)为5.0±1.0 μmol/L.RP62719 10 μmol/L在+40 mV时对犬心室肌细胞Ito抑制率为84.0±4.4%, IC50为1.2±0.51 μmol/L.在+40 mV时, 50 μmol/L RP62719还可使豚鼠心室肌细胞IKstep 减少50.0±8.3%, IKtail减少56.0±4.9%, IC50分别为4.2±0.8 μmol/L和3.3±0.75 μmol/L.提示RP62719抗心律失常的离子机制与其对IK1、Ito及IK的抑制有关.  相似文献   

5.
多不饱和脂肪酸对成年雪貂心肌钾通道的作用   总被引:7,自引:0,他引:7  
Xiao YF  Morgan JP  Leaf A 《生理学报》2002,54(4):271-281
本研究是在成年雪貂的心肌上研究多不饱和脂肪酸(PUFA)对电压门控钾通道的效应。我们观察到,n-3 PUFA能抑制短时性外向钾电流(Ito)和延迟整流钾电流(IK),而对内向整流钾电流(IK1)则没有明显影响。二十二碳六烯酸(DHA)对Ito和Ik能产生浓度依赖性的抑制作用,其IC50分别为7.5和20μmol/L,但不影响IK1。二十碳五烯酸(EPA)对这三种钾通道的作用与DHA相似。花生四烯酸(5或10μmol/L)先引起IK的抑制,然后引起IK,AA的激活;用环氧合酶抑制剂消炎痛可以阻断花生四烯酸激活IK,AA的作用。不具有抗心律失常作用的单不饱和脂肪酸和饱和脂肪酸都不明显影响这些钾通道的活性。上述实验结果证明,n-3 PUFA能抑制心肌细胞的Ito和IK,但和我们以前报道的PUFA对心肌钠电流和钙电流的作用相比,其对Ito和IK抑制作用的效能较低。n-3 PUFA的抗心律失常效应可能与它们抑制心肌钠、钙、钾通道的作用有关。  相似文献   

6.
应用全细胞膜片钳制技术观察了低温保存的大鼠肝细胞外向钾电流(Ik)的变化。结果表明,低温保存大鼠肝细胞的外向钾电流为5.04±0.82nA(n=18),大于对照组肝细胞膜电流2.85±1.21nA(n=32)(P<0.01)。表明低温保存的大鼠肝细胞外向钾电流显著增大  相似文献   

7.
使用全细胞膜片箝技术 ,研究RP6 2 719对内向整流钾电流 (IK1)、瞬时外向钾电流 (Ito)和延迟外向整流钾电流 (IK)的作用 ,并探讨其抗心律失常作用的机制。实验结果表明 ,在指令电压为 - 10 0mV时 ,RP6 2 719可显著抑制豚鼠心室肌细胞IK1,半数抑制浓度 (IC50 )为 5 0± 1 0 μmol/L。RP6 2 71910 μmol/L在 40mV时对犬心室肌细胞Ito抑制率为 84 0± 4 4% ,IC50 为 1 2± 0 5 1μmol/L。在 40mV时 ,5 0 μmol/LRP6 2 719还可使豚鼠心室肌细胞IKstep减少 5 0 0± 8 3% ,IKtail减少 5 6 0± 4 9% ,IC50 分别为 4 2± 0 8μmol/L和 3 3± 0 75 μmol/L。提示RP6 2 719抗心律失常的离子机制与其对IK1、Ito及IK 的抑制有关  相似文献   

8.
焦亚硫酸钠对大鼠海马CA1区神经元钾电流的影响   总被引:2,自引:0,他引:2  
目的:探讨焦亚硫酸钠(SMB)、二氧化硫(SO2)及其体内衍生物(亚硫酸盐和亚硫酸氢盐)对中枢神经元钾通道的影响及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GPx)相应的保护作用.方法:采用全细胞膜片钳技术研究了SMB对大鼠海马CA1区神经元瞬间外向钾电流(IA)和延迟整流钾电流(IK)的影响.结果:①焦亚硫酸钠可增大全细胞IA和IK,且具剂量依赖性和电压依赖性,使IA和IK增大50%的剂量分别为15.8 μmol/L和11.5μmol/L;②10 μmol/L的SMB均可显著影响IA和IK的激活过程,给药前后IA的半数激活电压分别为(-12.6±1.6)mV和(-7.0±1.3)mV(n=8,P<0.01),IK的半数激活电压分别为(10.8±0.9)mV和(21.6±0.7)mV(n=8,P<0.01),但不改变其斜率因子;③10μmol/L的SMB还非常显著地影响IA的失活过程,给药前后其半数失活电压分别为(-97.0±1.1)mV和(-84.4±3.3)mV(n=8,P<0.01),但也不改变其斜率因子;④抗氧化酶SOD(1×106U/L)、CAT(2×106U/L)及GPx(105U/L)均可使SMB(10μmol/L)增大的IA和IK部分恢复.结论:SMB可显著增大IA和IK,抑制IA和IK的激活过程及IA的失活过程,从而导致胞内K 的外流增加,使胞内K 浓度降低,从而对中枢神经元功能产生不利影响.  相似文献   

9.
桑楠  孟紫强 《动物学报》2003,49(1):73-79
本文利用全细胞膜片钳技术研究了SO2 代谢衍生物———NaHSO3 和Na2 SO3 (二者分子比为 1∶3)对大鼠海马CA1区神经元瞬间外向钾电流 (IA)和延迟整流钾电流 (IK)的影响。结果表明 ,SO2 代谢衍生物可显著增大IA 和IK,且呈剂量依赖性关系 ,使IA 和IK 增大 5 0 %的剂量分别为 2 6 19μmol/L和 14 5 0 μmol/L。此外还与电压呈依赖性关系 ,但不具有频率依赖性。结果还表明 ,10 μmol/LSO2 代谢衍生物不影响IA 的激活过程 ,而对IK 的激活过程有非常显著的影响 ,给药前后IK 的半数激活电压分别为 17 6 4± 7 31mV和 13 43± 2 0 0mV (n=10 ,P <0 0 1) ,但不改变其斜率因子。另外 ,10 μmol/LSO2 代谢衍生物还非常显著地影响IA 的失活过程 ,给药前后其半数失活电压分别为 - 6 5 93± 1 97mV和 - 5 9 2 2± 3 83mV (n =10 ,P <0 0 1) ,但不改变其斜率因子。由此推断 ,SO2 代谢衍生物增大大鼠海马CA1区神经元的IA 和IK,促进IK 的激活过程 ,并抑制IA 的失活过程 ,可导致胞内K 通过K 通道的外流增加 ,胞内K 浓度降低 ,造成中枢神经元功能紊乱 ,诱导神经细胞凋亡。这意味着SO2 代谢衍生物对中枢神经系统具有损伤作用 ,从而提示大气SO2 污染可能与一些中枢神经系统疾病的发生以及衰老有关 [动物学报 49(1) :73  相似文献   

10.
Jin HW  Zhang W  Qu LT  Wang XL 《生理学报》2003,55(6):711-716
本研究比较了转染的Kv4.2钾电流与原代培养大鼠海马神经元上瞬间外向钾电流(IA)动力学特征。实验采用瞬时转染,细胞培养和全细胞膜片钳记录等方法。结果表明:转染的Kv4.2通道电流和海马神经元上IA均具有明显的A型电流特征。海马神经元IA的半数最大激活电位和斜率因子分别为-10.0±3.3 mV和13.9±2.6 mV;半数最大失活电位和斜率因子分别为-93.0±11.4 mV和-9.0±1.5 mV;失活后再激活恢复时间常数(T)为27.9±14.1 ms。Kv4.2的半数最大激活电位和斜率因子分别为-9.7±4.1 mV和15.8±5.7 mV;半数最大失活电位和斜率因子分别为-59.4±12.2 mV和8.0±3.1 mV;Kv4.2的灭活后再激活的恢复时间常数τ为172.8±10.0 ms。结果提示:Kv4.2通道电流可能是海马神经元上的IA电流的主要成分,但不是唯一成分。  相似文献   

11.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.  相似文献   

12.
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or methanesulfonate for the NaCl of Tyrode's solution further slowed the rate of phase 1 repolarization, even though chloride replacement has no effect on the untreated preparation. In voltage clamp experiments, 4-AP rapidly and reversibly reduced the early peak of outward current that is seen when the Purkinje fiber membrane is voltage-clamped to potentials positive to -20 mV. In addition, 4-AP reduced the steady outward current seen at the end of clamp steps positive to -40 mV. 4-AP did not appear to change the slow inward current observed over the range of -60 to -40 mV, nor did it greatly change the current tails that have been used as a measure of the slow inward conductance at more positive potentials. 4-AP did not block the inward rectifying potassium currents, IK1 and IK2. A phasic outward current component that was insensitive to 4-AP was reduced by chloride replacement. We conclude that the early outward current has two components: a chloride-sensitive component plus a 4-AP-sensitive component. Since a portion of the steady-state current was sensitive to 4-AP, the early outward current either does not fully inactivate or 4-AP blocks a component of time-independent background current.  相似文献   

13.
14.
Basal retinal neurons of the marine mollusc Bulla gouldiana continue to express a circadian modulation of their membrane conductance for at least two cycles in cell culture. Voltage-dependent currents of these pacemaker cells were recorded using the whole-cell perforated patch-clamp technique to characterize outward currents and investigate their putative circadian modulation. Three components of the outward potassium current were identified. A transient outward current (IA) was activated after depolarization from holding potentials greater than -30 mV, inactivated with a time constant of 50 ms, and partially blocked by 4-aminopyridine (1-5 mM). A Ca(2+)-dependent potassium current (IK(Ca)) was activated by depolarization to potentials more positive than -10 mV and was blocked by removing Ca2+ from the bath or by applying the Ca2+ channel blockers Cd2+ (0.1-0.2 mM) and Ni2+ (1-5 mM). A sustained Ca(2+)-independent current component including the delayed rectifier current (IK) was recorded at potentials positive to -20 mV in the absence of extracellular Na+ and Ca2+ and was partially blocked by tetraethylammonium chloride (TEA, 30mM). Whole-cell currents recorded before and after the projected dawn and normalized to the cell capacitance revealed a circadian modulation of the delayed rectifier current (IK). However, the IA and IK(Ca) currents were not affected by the circadian pacemaker.  相似文献   

15.
Isolated spherical rat hepatocytes attached to collagen-coated cover slips generate a mean membrane potential (Em) of -78 +/- 9 mV as measured with high-resistance microelectrodes. The recordings were biphasic and were stable for upto 20 minutes. The correlation between external potassium concentration and Em was not linear. Several potassium-channel blockers did not effect the membrane potential. Addition of ouabain added to the incubation solution slowly depolarized the cells. The results indicate a high potassium permeability of the isolated spherical hepatocytes attached to collagen.  相似文献   

16.
17.
The whole-cell patch electrode voltage clamp technique was used to study the inactivation properties of the delayed rectifying potassium current of single cultured embryonic chick hepatocytes at 20 degrees C. The potassium current activates maximally within 250-500 ms of membrane depolarization, after which it decays with a monoexponential time course. Both steady-state activation and inactivation are voltage dependent. Steady-state inactivation declines from 100% at -5 mV to 0 near -70 mV. with half inactivation at -41 mV. At the resting potential (EM) of these cells (-21.5 +/- 6.0 mV, n = 36) 6-18% of the IK channels are not inactivated and less than 5% are open. Development and removal of inactivation follow single exponential time courses. The inactivation time constant attains a maximum of around 30 s at -35 mV and is sharply voltage dependent at the EM of these cells. Measurement of EM under current clamp shows random oscillations of 5-10 mV amplitude. We suggest that the voltage- and time-dependent properties of IK, in tandem with a time- and voltage-independent, non-selective current also seen here, would provide the mechanism for a fluctuating EM.  相似文献   

18.
Tang B  Tang M  Du YM  Liu CJ  Hong ZG  Luo HY  Hu XW  Song YL  Xi JY  Hescheler J 《生理学报》2004,56(5):625-631
为了从离子通道水平上探讨机体低氧适应的离子机制,本实验将雄性 SD 大鼠随机分为常氧对照组和慢性间歇性低氧组[氧浓度(10 ± 0.5) %, 间断缺氧每天 8 h]。用酶解法急性分离单个大鼠肺内动脉平滑肌细胞(pulmonary artery smoothmuscle cells, PASMCs),以全细胞膜片钳技术记录 PASMCs 膜上的电压门控性钾通道 (voltage-gated potassium channel, KV) 电流,观察急性缺氧对慢性间歇性低氧大鼠 PASMCs 的 KV 的影响, 为机体适应低氧能力提供实验依据。结果显示:⑴常氧对照组在电流钳下,急性缺氧可使膜电位明显去极化(由-47.2 ±2.6 mV 去极到 -26.7 ±1.2 mV ); 在电压钳下, 急性缺氧可显著抑制 KV电流( 60 mV 时, KV电流密度从 153.4 ± 9.5 pA/pF降到 70.1 ± 10.6 pA/pF), 峰电流的抑制率为(57.6 ± 3.3) %, 电流-电压关系曲线向右下移。⑵慢性间歇性低氧组KV电流密度随低氧时间延长而逐渐减少(慢性低氧10 d后就有显著性意义),电流- 电压关系曲线逐渐右下移。⑶急性缺氧对慢性间歇性低氧大鼠PASMCs KV电流的抑制作用随慢性间歇性低氧时间延长而逐渐减弱。上述观察结果提示慢性间歇性低氧减弱急性缺氧对 KV 的抑制, 这可能是机体低氧适应的一种重要机制。  相似文献   

19.
20.
Astrocytes (both type 1 and type 2), cultured from the central nervous system of newborn or 7 day old rats show voltage gated sodium and potassium channels that are activated when the membrane is depolarized to greater than -40 mV. The sodium channels in these cells have an h-infinity curve similar to that of nodal membranes but the activation (peak current-voltage) curves are shifted along the voltage axis by about +30 mV. These sodium currents are blocked only by high concentrations of tetrodotoxin. The voltage activated potassium currents in both types of astrocyte show at least two components; an inactivating component that is suppressed at holding potentials of greater than -40 mV and a persistent, non-inactivating current. Several types of single channel currents were observed in outside-out membrane patches from type 2 astrocytes. One type of potassium channel showed inactivation on depolarization and may contribute to the whole-cell inactivating current. In contrast, oligodendrocytes showed no obvious voltage gated membrane channels. The properties of the type 2 astrocyte-oligodendrocyte progenitor cell were investigated in two ways: 1) by examination of cells just beginning to differentiate along the "electrically silent" oligodendrocyte pathway or 2) by recording from progenitor cells cultured for 24 hours in the presence of cycloheximide to block the appearance of new membrane channels. In both cases, voltage gated inward (sodium) and outward (potassium) currents were noted. The outward current response showed both an inactivating and a non-inactivating component. Similar voltage activated inward and outward membrane currents were noted in reactive astrocytes freshly isolated (3-6 hours) from lesioned areas of adult rat brains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号