首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The cytochemical localization of particulate guanylate cyclase and adenylate cyclase activities in rabbit platelets were studied after stimulation with various agents, at the electron microscope level. In the presence of platelet aggregating agents such as thrombin and ADP, the particulate reaction product of guanylate cyclase activity was detectable on plasma membrane and on membranes of the open canalicular system. In contrast, samples incubated with platelet-activating factor showed no activation of the cyclase activity. Atrial natriuretic factor stimulated the particulate guanylate cyclase. The ultracytochemical localization of this activated cyclase was the same as that of thrombin-or ADP-stimulated guanylate cyclase. Adenylate cyclase activity was studied in platelets incubated with prostaglandin E1 plus or minus insulin. The enzyme reaction product was found at the same sites where guanylate cyclase was detected. Therefore guanylate and adenylate cyclase activities do not seem to be preferentially localised in platelet membranes.  相似文献   

2.
Adenylate and guanylate cyclase activities were confirmed in crude homogenates from rat peritoneal mast cells. Both enzyme activities were associated with the 105, 000 X g particulate fractions, but not detected in the supernatant fractions. The optimal pH for both cyclase activities was 8.2. Mn++ was essentially required for guanylate cylcase activity, while adenylate cyclase activity was observed in the presence of either Mg++ or Mn++. The apparent Km values of adenylate cyclase for Mn++-ATP and Mg++-ATP were 160 μM and 340 μM, respectively, whereas the value of guanylate cyclase for Mn++-GTP was 100 μM. Adenylate cyclase was activated by 10 mM NaF. However, both adenylate and guanylate cyclase activities were neither stimulated nor inhibited by the addition of various kinds of agents which stimulate or inhibit the release of histamine from mast cells.  相似文献   

3.
Adenylate and guanylate cyclase activities do not vary in concert during the multiplication of KB cells. Adenylate cyclase activity is low and slightly increases at cell confluency, guanylate cyclase activity, great in sparce cells, decreases during cell multiplication period. These variations are not caused by a modification of catalytic sites because the apparent Km for ATP or GTP is not changed, but by a modification of the dependance on Mg++ or Mn++ ions. Fresh serum increases guanylate cyclase activity but does not affect adenylate cyclase.  相似文献   

4.
Adenylate cyclase from the guinea-pig pancreas was activated in a dose-dependent manner by both secretin and cholecystokinin-pancreozymin, but in contrast with results in other species the hormones were approximately equipotent. All other hormones and transmitter substances tested were without any effect on adenylate cyclase activity. Guanylate cyclase activity was shown to have both particulate and supernatant components in the guinea-pig pancreas. The particulate enzyme, but not the supernatant enzyme, was markedly activated by Triton X-100, and most of the induced activity was released into the supernatant. The supernatant enzyme was specifically Mn2+-dependent, but, even though Mn2+ was maximally effective at a concentration of 3 mM, activity could be raised further by increasing Ca2+ concentration. The particulate enzyme, by contrast, was relatively Mn2+-independent. Activity of the particulate guanylate cyclase was enhanced by phosphatidylserine. The supernatant enzyme displayed classical Michaelis-Menten kinetics, but the particulate enzyme deviated markedly from such kinetics. Under none of the conditions used was any significant activation of guanylate cyclase observed with any of the secretogen hormones or transmitter substances.  相似文献   

5.
Isolated rat renal glomeruli contain an adenylate cyclase system and guanylate cyclase system. Adenylate cyclase was strikingly activated by purified parathyroid hormone, epinephrine, prostaglandin I2 and histamine. The demonstration of PTH activated adenylate cyclase in glomeruli raises the possibility of a role of this hormone in regulation of glomerular filtration rate. Guanylate cyclase was strikingly activated by CA2+, nitrate derivatives such as sodium nitroprusside. Its role remained still unknown.  相似文献   

6.
Summary The ultracytochemical localization of particulate guanylate cyclase has been studied in lamb olfactory mucosa after activation with rat atrial natriuretic factor (rANF), porcine brain natriuretic peptide (pBNP), porcine C-type natriuretic peptide (pCNP) or rat brain natriuretic peptide (rBNP). Particulate guanylate cyclase is the receptor for these peptides and recently two subtypes of the cyclase have been identified. These isoforms are stimulated differently by ANF, BNP and CNP. Under our experimental conditions, rANF, pCNP and pBNP were strong activators of particulate guanylate cyclase in lamb olfactory mucosa, as demonstrated by the presence of reaction product. Samples incubated in basal conditions without rANF, pCNP or pBNP, or samples incubated in presence of rBNP did not reveal any cyclase activity. The rANF-stimulated cyclase activity was localized in the apical portion of olfactory epithelium. pCNP-stimulated guanylate cyclase was detected to the lamina propria in association with secretory cells of Bowman's glands and with cells in close relation with Bowman's glands (elongated cells and myoepithelial cells). The cyclase activity stimulated by pBNP was limited to cells of Bowman's glands. The present data indicate that ANF and CNP are recognized by different receptors and that BNP and CNP bind to the same receptor.  相似文献   

7.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

8.
Hydroxylamine actived guanylate cyclase in particulate fraction of cerebral cortex of rat. Activation was most remarkable in crude mitochondrial fraction. When the crude mitochondrial fraction was subjected to osmotic shock and fractionated, guanylate cyclase activity recovered in the subfractions as assayed with hydroxylamine was only one-third of the starting material. Recombination of the soluble and the particulate fractions, however, restored guanylate cyclase activity to the same level as that of the starting material. When varying quantities of the particulate and soluble fractions were combined, enzyme activity was proportional to the quantity of the soluble fraction. Heating of the soluble or particulate fraction at 55 degrees for 5 min inactivated guanylate cyclase. The heated particulate fraction markedly activated guanylate cyclase activity in the native soluble fraction, while the heated soluble fraction did not stimulate enzyme activity in the particulate. The particulate fraction preincubated with hydroxylamine at 37 degrees for 5 min followed by washing activated guanylate cyclase activity in the soluble fraction in the absence of hydroxylamine. Further fractionation of the crude mitochondrial fraction revealed that the factor(s) needed for the activation by hydroxylamine is associated with the mitochondria. The mitochondrial fraction of cerebral cortex activated guanylate cyclase in supernatant of brain, liver, or kidney in the presence of hydroxylamine. The mitochondrial fraction prepared from liver or kidney, in turn, activated soluble guanylate cyclase in brain. Activation of guanylate cyclase by hydroxylamine was compared with that of sodium azide. Azide activated guanylate cyclase in the synaptosomal soluble fraction, while hydroxylamine inhibited it. The particulate fraction preincubated with azide followed by washing did not stimulate guanylate cyclase activity in the absence of azide. The activation of guanylate cyclase by hydroxylamine is not due to a change in the concentration of the substrate GTP, Addition of hydroxylamine did not alter the apparent Km value of guanylate cyclase for GTP. Guanylate cyclase became less dependent on manganese in the presence of hydroxylamine. Thus the activation of guanylate cyclase by hydroxylamine is due to the change in the Vmax of the reaction.  相似文献   

9.
A particulate adenylate cyclase was identified in the excitable ciliary membrane from Paramecium tetraurelia. MnATP was preferentially used as substrate, the Km was 67 μM, Vmax was 1 nmol cAMP.min?1.mg?1, a marked temperature optimum of 37°C was observed. Adenylate cyclase was not inhibited by 100 μM EGTA or 100 μM La3+, whereas under these conditions guanylate cyclase activity was abolished. Fractionation of ciliary membrane vesicles by a Percoll density gradient yielded two vesicle populations with adenylate cyclase activity. In contrast, calmodulin/Ca-dependent guanylate cyclase was associated with vesicles of high buoyant density only.  相似文献   

10.
The activity of soluble and particulate guanylate cyclase (EC 4.6.1.2) has been compared with the distribution of neurotransmitter candidates in three rat forebrain nuclei, and the effects of local kainic acid injections into these nuclei have been tested. Soluble guanylate cyclase was highly concentrated in both the caudatoputamen and the nucleus accumbens, with lower activity found in the septum. This distribution coincided with markers for acetylcholine and monoamines, but not with markers for γ-aminobutyrate (GABA) or glutamate neurons. In contrast, particulate guanylate cyclase was equally active in all regions. Local injections of kainic acid, which destroyed cholinergic and GABA neurons in the caudatoputamen and in the nucleus accumbens, caused a rapid (70–90%) decrease in the soluble guanylate cyclase and a slower 50-60% fall in the particulate guanylate cyclase in these nuclei. In the septum, where kainate destroyed GABA cells but not cholinergic neurons, the guanylate cyclase activity was unchanged after the lesion. Thus, both the soluble and particulate guanylate cyclases appear to be concentrated in local neurons in the caudatoputamen and nucleus accumbens. In the septum, however, most of the guanylate cyclase activity is located outside kainate-sensitive neurons.  相似文献   

11.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

12.
Guanylate cyclase was activated 3- to 10-fold by hemin in a dose-dependent manner in membranes prepared from homogenates of rat lung, C6 rat glioma cells, or B103 rat neuroblastoma cells. Maximum activation was observed with 50 to 100 microM hemin with higher concentrations being inhibitory. Activation was observed when Mg2+-GTP but not when Mn2+-GTP was used as the substrate. Increased enzyme activity reflected selective activation of the particulate form of guanylate cyclase; hemin inhibited the soluble form of guanylate cyclase 70 to 90% over a wide range of concentrations. Activation was not secondary to proteolysis since a variety of protease inhibitors failed to alter stimulation by hemin. Protophorphyrin IX had little effect on particulate guanylate cyclase activity and sodium borohydride almost completely abolished hemin-dependent activation. These data suggest a requirement for the ferric form of the porphyrin-metal chelate for activation. However, agents which interact with the iron nucleus of porphyrins, such as cyanide, had little effect on the ability of hemin to activate guanylate cyclase. The stimulatory effects of hemin were observed in the presence of detergents such as Lubrol-PX, and highly purified particulate enzyme could be activated to the same extent as enzyme in native membranes. These data suggest that the interaction of porphyrins with particulate guanylate cyclase is complex in nature and different from that with the soluble enzyme.  相似文献   

13.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

14.
The effects on guanylate cyclase and cyclic GMP accumulation of a synthetic peptide containing the amino acid sequence and biological activity of atrial natriuretic factor (ANF) were studied. ANF activated particulate guanylate cyclase in a concentration- and time- dependent fashion in crude membranes obtained from homogenates of rat kidney. Activation of particulate guanylate cyclase by ANF was also observed in particulate fractions from homogenates of rat aorta, testes, intestine, lung, and liver, but not from heart or brain. Soluble guanylate cyclase obtained from these tissues was not activated by ANF. Trypsin treatment of ANF prevented the activation of guanylate cyclase, while heat treatment had no effect. Accumulation of cyclic GMP in kidney minces and aorta was stimulated by ANF activation of guanylate cyclase. These data suggest a role for particulate guanylate cyclase in the molecular mechanisms underlying the physiological effects of ANF such as vascular relaxation, natriuresis, and diuresis.  相似文献   

15.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

16.
Particulate guanylate cyclase from bovine adrenal cortex can be stimulated by ANF. A 2-fold stimulation of the enzyme was obtained with 100 nM ANF and a half-maximal stimulation, with a 5 nM dose. The stimulation by ANF persisted for at least 30 min. Various detergents, such as Triton X-100, Lubrol PX, cholate, CHAPS, digitonin and zwittergent, stimulated several-fold the activity of particulate guanylate cyclase. However, only Triton X-100 dispersed particulate guanylate cyclase without affecting its response to ANF. The dose-response curve of ANF stimulation of the particulate and the Triton X-100 dispersed enzyme was similar. The dispersion of a fully responsive guanylate cyclase to ANF will help us to uncover the type of interactions between guanylate cyclase and ANF. It will also be used as a first step for the purification of an ANF-sensitive particulate guanylate cyclase.  相似文献   

17.
Rat lung homogenates contained significant amounts of guanylate cyclase activity in both 100,000 times g (60 min) particulate and supernatant fractions. In the presence of detergent, the particulate fraction contained 40% as much activity as did the supernatant fraction. Detergent-dispersed particulate and partially purified soluble guanylate cyclase preparations were characterized with respect to divalent cation requirements, divalent cation interactions, kinetic behavior, and gel filtration profiles. Both soluble and particulate guanylate cyclases required divalent cation for activity. The soluble preparation was 10 times more active in the presence of Mn-2plus than in the presence of Mg-2plus or Ca-2plus and no detectable activity was seen with Ba-2plus or Sr-2plus. Particulate guanylate cyclase activity was detectable only in the presence of Mn-2plus. Both enzyme preparations required Mn-2plus in excess of GTP for optimal activity at subsaturating amounts of GTP. At near-saturating GTP, the soluble enzyme required excess Mn-2plus, but the particulate enzyme did not. For kinetic analyses the enzymes were considered to require two substrates: metal-GTP and Me-2plus. Apparent negative cooperative behavior was seen with the soluble enzyme when excess Mn-2plus (in excess of GTP) was varied from 0.01 to 0.2 mM; above 0.2 mM excess Mn-2plus classical kinetic behavior was seen with an apparent KMn-2plus of 0.2 mM at near-saturating MnGTP. Similar studies using the particulate preparation yielded only classical kinetic behavior, but the apparent KMn-2plus decreased to near zero when MnGTP was near-saturating. Kinetic patterns for the particulate and soluble enzymes also differed when reciprocal initial velocities were plotted as a function of reciprocal MnGTP concentrations; classical kinetic behavior was seen with the soluble enzyme with an apparent KMnGTP of about 12 muM (at near-saturating excess Mn-2plus), whereas apparent positive cooperative behavior was seen with the particulate preparation (Hill coefficient equals 1.6, S0.5 EQUALS 70 MUM. Ca-2plus "activation" of soluble guanylate cyclase was related to the Mn-2plus:GTP ratio. Activation was most apparent when saturating amounts of Mn-2plus and MnGTP. At relatively high concentrations of Ca-2plus (0.1 to 4 mM), the addition of 10 muM Mn-2plus resulted in a 3- to 5-fold increase in soluble guanylate cyclase activity. In contrast, Ca-2plus sharply inhibited particulate guanylate cyclase activity. Gel filtration profiles of particulate and soluble preparations indicated differences in physical properties of the enzymes. As estimated by gel filtration, particulate (detergent-dispersed)evels. Here, removal of renal tissue is contraindicated. In all renal hy  相似文献   

18.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and gamma-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+1)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5'-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme "marker" for the renal basal-lateral membrane.  相似文献   

19.
Adenine nucleotides activate basal particulate guanylate cyclase in rat lung membranes. Activation is specific for adenine and not guanine, cytidine or uridine nucleotides. The concentration of adenine nucleotides yielding half-maximum activation of particulate guanylate cyclase is 0.1 mM and this nucleotide activates the enzyme by increasing maximum velocity 11-fold without altering affinity for substrate. Activation is specific for particulate guanylate cyclase, since soluble enzyme is inhibited by adenine nucleotides. Similarly, activation is specific for magnesium as the enzyme substrate cation cofactor, since adenine nucleotides inhibit particulate guanylate cyclase when manganese is used. Adenine nucleotide regulation of particulate guanylate cyclase may occur by a different molecular mechanism compared to other activators, since the effects of these nucleotides are synergistic with those of detergent, hemin and atrial natriuretic peptides. Cystamine inhibits adenine nucleotide activation of particulate guanylate cyclase at concentrations having minimal effects on basal enzyme activity suggesting a role for critical sulfhydryls in mechanisms underlying nucleotide regulation of particulate guanylate cyclase. Purification and quantitative recovery of particulate guanylate cyclase by substrate affinity chromatography results in the loss of adenine nucleotide regulation. These data suggest that adenine nucleotides may be important in the regulation of basal and activated particulate guanylate cyclase and may be mediated by an adenine nucleotide-binding protein which is separate from that enzyme.  相似文献   

20.
Various pure snake venom phospholipases A2 were used for studying their effect on guanylate cyclase activity. All the phospholipases A2 tested were found to activate guanylate cyclase from a rat brain homogenate. It was shown that particulate guanylate cyclase was especially affected. Intact glial cells incubated in presence of phospholipase A2 showed also an increased guanylate cyclase activity, demonstrating that the phospholipase effect, observed in disrupted cells, occurs also at the cellular level. These results suggest that in intact cells membrane-bound phospholipase A2 activity could be involved in the modulation of the cellular cyclic GMP content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号