首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guanylate cyclase of plasma membrane of isolated rat fat cells was activated 7 to 11 fold by oleic acid, linoleic acid, linolenic acid or arachidonic acid. The activation of the enzyme by linoleic acid or oleic acid was influenced by the concentration of enzyme protein and that of the fatty acid. At 158 μg/ml of enzyme protein, 0.6 mM linoleic acid produced maximal activation of 12 fold which was partially reversed by washing. Particulate guanylate cyclase of cerebral cortex and liver was also activated by linoleic acid.  相似文献   

2.
Human neutrophils were incubated with granulocyte-macrophage (GM)-CSF and examined for changes in second messenger systems. Twofold increases in cGMP but not cAMP were measured after 5 to 20 min with 100 U/ml GM-CSF. Guanylate cyclase activities in membrane and cytosol fractions were increased to the same extent whether measured in the presence of Mg2+ or Mn2+, or in the cytosol with Mg2+ + N-methyl-N'-nitro-N-nitroso-guanidine. Kinetic studies of the cytosol enzyme showed no changes in the Km values for Mg2+ and Mn2+dependent guanylate cyclase activities (0.91 and 0.022 mM, respectively), whereas Vm values were increased after treating intact cells with GM-CSF. Two peaks of guanylate cyclase activity were observed, one at 10 and another at 60 min after adding 100 U/ml GM-CSF, whereas only one peak at 5 min occurred with 1 U/ml. Adenylate cyclase activity was reduced by nearly 50% after adding 100 U/ml GM-CSF for 10 to 30 min. These effects were also seen in the presence of several hormonal and nonhormonal adenylate cyclase stimulators. In contrast, small increases in adenylate cyclase activity occurred after adding 1 U/ml GM-CSF. In experiments to examine the pathway of guanylate cyclase activation by GM-CSF, we observed no changes in inositol phosphates, intracellular calcium ion, or cytosolic protein kinase C. The augmentation of chemotactic peptide-induced superoxide production by GM-CSF concentrations, may be related to the effects of the higher levels of GM-CSF to stimulate late increases in guanylate cyclase or decreases in adenylate cyclase.  相似文献   

3.
Guanylate cyclase from human platelets was over 90% soluble, even when assayed in the presence of Triton X-100. A time-dependent increase in activity occurred when the enzyme was incubated at 37 degrees and this spontaneous activation was prevented by dithiothreitol. Arachidonic acid stimulated the soluble enzyme activity approximately 2- to 3-fold. Linear double reciprocal plots of guanylate cyclase activation as a function of arachidonic acid concentration were obtained with a Ka value of 2.1 muM. A Hill coefficient of 0.98 was obtained indicating that one fatty acid binding site is present for each catalytic site. Concentrations of arachidonic acid in excess of 10 muM caused less than maximal stimulation. Dihomo-gamma-linolenic acid and two polyunsaturated 22 carbon fatty acids stimulated the activity of guanylate cyclase to the same degree as did arachidonic acid. The methyl ester of arachidonic acid was much less effective. Diene, monoene, and saturated fatty acids of various carbon chain lengths as well as prostaglandins E1, E2, and F2alpha, had little or no effect. These data indicate that the structural determined required for stimulation by fatty acids of soluble platelet guanylate cyclase is a 1,4,7-octatriene group with its first double bond in the omega6 position. This structural group is similar to the substrate specificity determinants of fatty acid cyclooxygenase, the first enzyme of the prostaglandin synthetase complex. However, conversion of arachidonic acid to a metabolite of the cyclooxygenase pathway did not appear to be required for activation of the cyclase since activation occurred in the 105,000 X g supernatant fraction and pretreatment of this fraction with aspirin did not alter the ability of arachidonic acid to activate guanylate cyclase. Kinetic studies showed that the stimulation of guanylate cyclase by arachidonic acid is primarily an effect on maximal velocity. Arachidonic acid did not alter the concentration of free Mn2+ required for optimal activity. It is concluded that the activity of the soluble form of guanylate cyclase in cell-free preparations of human platelets can be increased by a lipid-protein interaction involving specific polyunsaturated fatty acids.  相似文献   

4.
Stimulation of guanylate cyclase of fibroblasts by free fatty acids.   总被引:8,自引:0,他引:8  
The membranous guanylate cyclase of Balb 3T3 fibroblasts was stimulated by a fraction of calf serum extracted by ether. Stimulation was observed with Mg2+ as the only bivalent cation in the presence of Lubrol PX. The activator co-chromatographed with free fatty acids, and several of these were found to stimulate guanylate cyclase. Among the saturated fatty acids, myristic acid had the highest activity. Stimulating activity diminished as the hydrocarbon chain of the fatty acid was lengthened or shortened. Introduction of an unsaturated bond enhanced the activation by the longer fatty acids. This pattern of specificity is similar to that observed for the effect of fatty acids on many other membranous functions. Under appropriate conditions fatty acids were found to stimulate guanylate cyclase activity in the absence of Lubrol PX. The relationship among the effects of Mg2+, Mn2+, Lubrol PX, and fatty acids on enzyme activity was examined. On the basis of these studies, it appears that fatty acids stimulate the enzyme by a mechanism different from nonionic detergents or Mn2+.  相似文献   

5.
The partially purified soluble guanylate cyclase (GTP pyrophosphatelyase(cyclizing), EC 4.6.1.2) from human caudate nucleus is stimulated from 2 to 4-fold by metal chelating agents. EDTA (K 1/2 - 4.8 microM) is more potent than CDTA (K 1/2 = 13.2 microM) or EGTA (K 1/2 = 21.8 microM) at stimulating activity. Stimulation by chelating agents is apparently not due to removal of inhibitory divalent cations which contaminate the enzyme or reaction mixture. EDTA increases guanylate cyclase activity in part by increasing the affinity of the enzyme for the substrate (MgGTP) 10-fold. Dopamine inhibits partially purified guanylate cyclase in the presence or absence of EDTA. Dopamine increases the Ka of guanylate cyclase for the activator, free Mn2+, more than 50-fold, from 3 to 150 microM.  相似文献   

6.
The cyclic AMP metabolism of cultured epithelial cells was investigated. Epinephrine or 1-methyl,3-isobutylxanthine (MIX) alone had no effect on cyclic AMP levels in intact cells, whereas the combination of the two agents yielded a 6- to 10-fold increase in cyclic AMP levels. Both basal and stimulated cyclic AMP levels decreased with increasing cell density. Cell-free adenylate cyclase preparations were stimulated markedly by epinephrine or isoproterenol in the absence of MIX. Since the epithelial cells were found to have a relatively small amount of cyclic nucleotide phosphodiesterase (PDE) activity, the requirement for MIX to visualize intact cell responsiveness to epinephrine could be explained only partially by its PDE inhibitory properties.  相似文献   

7.
8.
HeLa cells cultured in a biotin-deficient medium showed reduced rates of protein synthesis, DNA synthesis and growth. Continuous synthesis is required for the increase in DNA synthesis observed upon addition of biotin to cells cultured in biotin-deficient medium. The addition of biotin to the biotin-deficient culture medium increased the activity of guanylate cyclase in both HeLa cells and fibroblasts. Both cell types cultured in biotin deficient medium showed reduced activity of RNA Polymerase II. The exogenous addition of biotin to the biotin-deficient cell cultures also resulted in increased activity of RNA Polymerase II in HeLa cells and fibroblasts. The maximal response was observed in 4 hours. Significant increase in enzyme activity was observed at 10–8 M biotin in the culture medium. The growth promoting effect of biotin seems to involve stimulations of cellular guanylate cyclase and RNA Polymerase II activity.  相似文献   

9.
Interferon enhances guanylate cyclase activity in human lymphoma cells   总被引:1,自引:0,他引:1  
Treatment of the human Burkitt lymphoma derived cell line Daudi with electrophoretically pure human interferon α caused a rapid increase in the intracellular concentration of guanosine 3′,5′ cyclic-monophosphate (cyclic GMP). This increase was accompanied by an enhancement of guanylate cyclase activity in interferon-treated cells. No change in cyclic GMP phosphodiesterase was observed. However electrophoretically pure human interferon α was without effect on the guanylate cyclase activity of cell-free lysates of Daudi cells. This strongly suggests that the increase in the intracellular concentration of cyclic GMP in interferon treated cells is due to an activation of guanylate cyclase which is mediated via an interaction of interferon with its specific cell surface receptor.  相似文献   

10.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

11.
12.
13.
Rat liver regeneration is regulated by a humoral signal that includes insulin and a sustained elevation in glucagon. The intracellular response is characterized by a rise in cAMP as well as altered cGMP metabolism, i.e. increased particulate guanylate cyclase activity. To evaluate the role of hormones in the regulation of guanylate cyclase during liver regeneration, the enzyme activity of primary cultures of rat hepatocytes was examined. Hepatocytes were maintained for 22 h in medium containing various combinations of insulin, glucagon, and cAMP. The cells were then harvested and homogenized and the guanylate cyclase activity was assessed in vitro. Hepatocytes maintained in 100 nM insulin exhibited a 42% (p < 0.001) increase in guanylate cyclase activity when compared to cells cultured in medium alone. Incubation with glucagon (100 nM) produced a 52% (p < 0.01) rise. In the presence of insulin (100 nM), culturing with as little as 5 nM glucagon resulted in increased activity, and 100 nM glucagon produced a 161% (p < 0.001) rise above cultures maintained in insulin alone. Thus, the combination of the two hormones produced an effect that was significantly (p < 0.01) greater than additive. Dibutyryl cAMP and 8-bromoadenosine 3':5'-monophosphoric acid were at least as effective as glucagon; the enzyme activity of cells maintained in 5 microM N6,02'-dibutyryl adenosine 3':5'-monophosphoric acid and 100 nM insulin was 243% (p < 0.001) above those in insulin alone. The findings suggest that the activity of hepatocyte guanylate cyclase is regulated by a synergistic action of insulin and glucagon and that positive interactions between the two cyclic nucleotide second messenger systems exist.  相似文献   

14.
15.
Good evidence exists to indicate that the vasodilating effect of adenosine is mediated by cell surface receptors on vascular smooth muscle cells. The mechanism of transmembrane signal transduction for adenosine, however, is not fully understood. Since cGMP is a second messenger known to mediate vasodilation, I have examined the effect of adenosine on the intracellular concentration of cGMP in vascular smooth muscle cells from rat aorta. I found that adenosine at 10(-9) to 10(-5) M led to an increase in intracellular cGMP levels in a dose-dependent fashion. The effect of adenosine on cyclic guanosine inorganic monophosphate (cGMP) could be mimicked by the A-type receptor agonists N6-cyclohexyladenosine and 5'-N-ethylcarboxamidoadenosine and was attenuated by the A-receptor antagonist theophylline. The order of potency of the adenosine analogues was N6-cyclohexyladenosine greater than 5'-N-ethylcarboxamidoadenosine greater than adenosine. These findings suggest that the effect of adenosine on cGMPi is mediated by A1-type cell surface receptors. Concerning the mechanism by which adenosine could elevate cGMPi, I found that the effect of adenosine on cGMPi was potentiated by the cGMP phosphodiesterase-specific inhibitor M & B 22948. Moreover, I found that N6-cyclohexyladenosine, 5'-N-ethylcarboxamidoadenosine, and adenosine stimulated a guanylate cyclase in homogenates of the cultured smooth muscle cells in a dose-dependent fashion with the same order of potency as their effects on cGMPi. Further evidence was obtained to indicate that adenosine and its analogues stimulated a particulate guanylate cyclase activity, whereas they did not alter soluble guanylate cyclase activity. Since cGMP is known as a second messenger mediating relaxation of vascular smooth muscle cells, the results obtained in this study could suggest that adenosine exerts its vasorelaxing effect by activating an Ai-receptor-linked guanylate cyclase.  相似文献   

16.
The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.  相似文献   

17.
Despite the key role Ca2+ plays in the nervous system, biochemical actions on neural tissue of the Ca2+-regulating peptide hormones parathyrin and calcitonin were unknown. Until a few years ago only neurons, but not glial cells, were considered as targets for peptide hormones. Our recent observation that peptide hormones do indeed act on glial cells is extended by the present report that these cells respond to the calcaemic peptide hormones parathyrin and calcitonin. In cultured murine brain cells mainly consisting of glioblasts, parathyrin stimulates the accumulation of cyclic AMP. The half-maximal effect is elicited at 30 nM parathyrin. With rat brain cells the effects are three times those observed with mouse brain cells. Calcitonin, which is less potent than parathyrin, elevates the concentration of cyclic AMP only in rat brain cells. If properly occupied, the inhibitory receptors present on the cells lower the increase in the level of cyclic AMP evoked by parathyrin and, to some extent, that elicited by calcitonin. The results suggest that: (i) these or closely related hormones might exert regulatory functions in brain; and (ii) glial cells must be considered in discussions of the targets of the calcaemic and other peptide hormones.  相似文献   

18.
Soluble guanylate cyclase activity from guinea pig heart is inhibited by increasing concentrations of sodium citrate. The Ki value was found to be 2.83 +/- 0.05 mM in the presence of 3 mM Mn2+ and 0.6 mM GTP. Citrate acts by lowering Vmax and increasing the apparent values of Km for GTP and K0.5 for Mn2+ and Mg2+. The soluble guanylate cyclase, activated by sodium nitroprusside, was also inhibited by citrate. This inhibitory action of citrate was not restricted to soluble guanylate cyclase activity of the heart and has been demonstrated also in the supernatant of lung, liver, diencephalon and in the homogenate of blood platelets. Since citrate is known to be an important intermediate of metabolism, its intracellular concentration may be also of relevance for guanylate cyclase activity.  相似文献   

19.
A 23 amino acid synthetic peptide fragment of atrial natriuretic factor (ANF) stimulated guanylate cyclase activity in isolated human glomeruli in a concentration- and time-dependent manner. ANF activated particulate guanylate cyclase whereas it had no effect on soluble guanylate cyclase. These results demonstrate that the glomerulus is a target structure for ANF in humans. They also suggest that ANF-induced increase in glomerular filtration rate is due to a direct effect of this peptide on the glomerular cells mediated by activation of glomerular guanylate cyclase.  相似文献   

20.
Summary The cyclic AMP metabolism of cultured epithelial cells was investigated. Epinephrine or 1-methyl, 3-isobutylxanthine (MIX) alone had no effect on cyclic AMP levels in intact cells, whereas the combination of the two agents yielded a 6- to 10-fold increase in cyclic AMP levels. Both basal and stimulated cyclic AMP levels decreased with increasing cell density. Cell-free adenylate cyclase preparations were stimulated markedly by epinephrine or isoproterenol in the absence of MIX. Since the epithelial cells were found to have a relatively small amount of cyclic nucleotide phosphodiesterase (PDE) activity, the requirement for MIX to visualize intact cell responsiveness to epinephrine could be explained only partially by its PDE inhibitory properties. This study was supported in part by Grant PDT-16B, American Cancer Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号