首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Morphogenesis from cultured megagametophyte, nucellus and immature embryos of three Zamia species on modified B5 medium containing 2,4-d and kinetin was compared. Organogenesis and somatic embryogenesis occurred from the megagamethophyte and zygotic embryo explants of Zamia pumila and Z. furfuracea tissue cultures, but only from the megamametophyte of Z. fischeri. Nucellar callus of Z. pumila produced globular structures that failed to develop further. Plantlets were recovered from somatic embryos of Z. pumila.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid  相似文献   

2.
Callus cultures were initiated from zygotic embryos of Encephalartos dyerianus and E. natalensis. Callus of both species were transferred onto a modified B5 medium containing different combinations of 2,4-dichlorophenoxyacetic acid and kinetin. Somatic embryogenesis and shoot organogenesis occurred in both species. The embryos were dicotyledonary. To date none of the embryos have matured.Abbreviations ABA abscisic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

3.
A protocol is described for the production of plantlets from mature excised embryos of jack pine (Pinus banksiana Lamb.), a conifer widely distributed in temperate North America. Shoot buds were induced on von Arnold and Erickson's or Bornman's MCM salts with 10 M cytokinin for 2 weeks, using Phytagar® for gelling the medium. Bud development and shoot elongation required frequent subculture on MCM medium with activated charcoal and reduced inorganic nitrogen during elongation. Shoots were rooted in peat-perlite with -naphthaleneacetic acid. The protocol produces about six plantlets per embryo.  相似文献   

4.
Summary We have developed efficient methods for plant regeneration, via both embryogenesis and organogenesis, of Smooth Cayenne pineapple, Ananas comosus (L.) Merr. Leaf bases and core (stem) sections of in vitro shoots, produced from culture of crown tip meristem, were used as explants for plant regeneration as follows: (1) Leaf base and core section explants cultured on Murashige and Skoog (MS) medium containing 41 μM 4-amino-3,5,6-trichloropicolinic acid (picloram, P) or thidiazuron (T)/P combinations produced embryogenic tissues. Different types of embryogenic tissues (friable emryogenic tissue, embryogenic cell cluster, and chunky embryogenic tissue) have been developed with varying properties in terms of growth rate and state of development. The embryogenic tissues regenerated shoots upon culture on MS medium containing 13 μM 6-benzylaminopurine (BA) and 1μM α-naphthaleneacetic acid (NAA) followed by culture on MS medium containing 4 μM BA. (2) Crown tip meristems cultured on MS medium containing 13 μM BA followed by leaf explants cultured on MS medium with 27 μM NAA and 1 μM BA produced shoots via direct organogenesis. (3) Explants cultured on MS medium containing 5 μM T and 0.5 μM indole-3-butyric acid (IBA) produced nodular globular structures, which produced shoots upon culture on MS medium containing 1 μM BA and 1 μM gibberellic acid. Shoots obtained from all of the above methods were rooted in half-strength MS medium containing 3 μM NAA and 2.5 μM IBA. Plants were transferred to the greenhouse or shipped to Costa Rica for field trials. Somatic embryo-derived plants exhibited 21 % spininess, and organogenic-derived plants exhibited 5% spininess in the field trials.  相似文献   

5.
Picea omorika plants were regenerated from embryo and seedling shoot tip cultures. Adventitious and axillary shoots were produced on 1/2 MS medium containing benzyladenine and kinetin. Benzyladenine was more effective in bud induction, whereas kinetin hastened shoot development. Excised shoots were elongated on 1/3 MS medium without growth regulators, multiplied with kinetin and rooted with or without indole-3-butyric acid.Abbreviations BA N6-benzyladenine - 2IP N 6-(2-isopenteny) adenine - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid  相似文献   

6.
In vitro protocols for plant regeneration of Arachis correntina through both somatic embryogenesis and organogenesis were developed using immature leaves as explants. Morphologically normal somatic embryos were obtained on culture media composed of 20.70 or 41.41 μM picloram (PIC) with the addition of 0.044 μM 6-benzylaminopurine (BA), resulting in a 33 and 24% of conversion into plants, respectively. The source of explants and the developmental stage of the leaves had a marked effect on somatic embryogenesis. The second folded immature leaves from in vitro growing plants were the most responsive producing up to 30% embryogenesis in MS+41.41 μM PIC. Embryos converted into plants after transfer to MS medium devoid of growth regulators and these plants were successfully acclimatised. Adventitious shoots were obtained on culture media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA) with or without 0.044 μM BA, achieving plant regeneration in the induction media. The highest percentage of bud formation was obtained on culture medium composed of␣MS+10.74 μM NAA+0.044 μM BA (12.5%). Roots were formed on all culture media tested. Regenerated plants were transferred to pots and grew well under greenhouse conditions.  相似文献   

7.
We evaluated the capacity of the plant growth regulator thidiazuron (TDZ), a substituted phenylurea with high cytokinin-like activity, to promote organogenesis in petals and leaves of several carnation cultivars (Dianthus spp.), combined with 1-naphthaleneacetic acid (NAA). The involvement of the endogenous auxin indole-3-acetic acid (IAA) and purine-type cytokinins was also studied. Shoot differentiation was found to depend on the explant, cultivar and balance of growth regulators. TDZ alone (0.5 and 5.0 micromol/L) as well as synergistically with NAA (0.5 and 5.0 micromol/L) promoted shoot organogenesis in petals, and was more active than N6-benzyladenine. In petals of the White Sim cultivar, TDZ induced cell proliferation in a concentration-dependent manner and, on day 7 of culture, the proportion of meristematic regions in those petals allowed the prediction of shoot regeneration capacity after 30 days of culture. Immunolocalization of CK ribosides, N6-(delta2-isopentenyl)adenosine, zeatin riboside (ZR) and dihydrozeatin riboside (DHZR), in organogenic petals showed them to be highly concentrated in the tips of bud primordia and in the regions with proliferation capacity. All of them may play a role in cell proliferation, and possibly in differentiation, during the organogenic process. After seven days of culture of White Sim petals, NAA may account for the changes found in the levels of IAA and DHZR, whereas TDZ may be responsible for the remarkable increases in N6-(delta2-isopentenyl)adenine (iP) and ZR. ZR is induced by low TDZ concentrations (0.0-0.005 micromol/L), whereas iP, that correlates with massive cell proliferation and the onset of shoot differentiation, is associated with high TDZ levels (0.5 micromol/L). In addition to the changes observed in quantification and in situ localization of endogenous phytohormones during TDZ-induced shoot organogenesis, we propose that TDZ also promotes growth directly, through its own biological activity. To our knowledge, this study is the first to evaluate the effect of TDZ on endogenous phytohormones in an organogenic process.  相似文献   

8.
An efficient and reproducible procedure is established for the plant regeneration from hypocotyl explants and hypocotyl-or stem-derived calli in Astragalus melilotoides. High frequency somatic embryo formation (98.3%) occurred direct on hypocotyls on Murashige and Skoog (MS) medium supplemented with 2.69 µM NAA and 4.44 µM BA within 5 weeks. Three types of calli were induced from the hypocotyl and stem segments on MS medium containing 9.05 µM 2,4-D and 2.22–4.44 µM BA. Both somatic embryos and adventitious buds were initiated from hypocotyl-derived calli while only adventitious buds were formed from stem-derived calli in MS medium supplemented with 2.69 µM NAA and 4.44–8.89 µM BA. Somatic embryos or adventitious buds developed into plantlets following being cultured for 3 weeks on MS medium without any growth regulators or with 14.78 µM IBA, respectively. All the regenerated plants were normal with respect to morphology and growth characters, and produced fertile seeds after planting in soil.  相似文献   

9.
InPinus ponderosa Dougl., application of the cytokinins, benzyladenine and 2-isopentenyl adenine, to excised cotyledons, promoted thein vitro formation of meristematic centers which led to bud and shoot production. Meristematic cells showed plastids with poorly developed thylakoid membranes and rudimentary grana, whereas cells in non-meristematic tissues and in growth regulator free medium, had chloroplasts with well developed inner membranes, and more thylakoid membranes and grana than plastids of meristematic cells. Chlorophyll and six polypeptides associated with photosynthesis were present in lower concentrations in cytokinin-treated cotyledons than in those cultured in growth regulator free medium. Both benzyladenine and 2-isopentenyl adenine are effective in inhibiting the accumulation of at least two photosynthetic polypeptides in the first 24 h in culture. The ability of cotyledons to respond in this way to cytokinins is lost after three days in culture in growth regulator free medium prior to treatment with cytokinin.  相似文献   

10.
Protoplasts derived from hypocotyls of seedlings grown on half-strength MS medium containing 1% sucrose were cultured at a density of 5×104 ml-1 in Kao's medium supplemented with 1.0 mgl-12,4-D, 0.1 mgl-1 NAA and 0.5 mgl-1 zeatin riboside. After three days of culture in darkness at 25±1°C, cultures were transferred to light (70 Em-2s-1) in a 16/8 h ligø ht/dark cycle. Cultures were diluted on the 7th, 10th and 13th day with Kao's medium containing 3.4% sucrose, 0.1 mgl-1 2,4-dichlorophenoxyacetic acid and 1.0 mgl-1 benzyladenine. On the fifteenth day, microcalli were plated on K3 medium gelled with 0.5% agarose (Type 1, low EEO, Sigma). After a further period of two weeks, transfers were made to specific media to achieve either organogenesis or somatic embryogenesis. Time taken from plating protoplasts to obtaining plantlets is 8–10 weeks. Using this procedure, several hundred regenerated plants have been hardened in a growth chamber and transferred to soil.  相似文献   

11.
Summary Induction of somatic embryogenesis, shoot organogenesis, and subsequent plant regeneration in niger seem to be dependent on genotype, choice of explant, and composition of media growth regulators. Two distinct regeneration protocols have been developed for somatic embryogenesis and shoot organogenesis. Somatic embryogenesis was induced from epicotyls and cotyledonary explants (9 to 35%) (but not from hypocotyls and roots) in presence of 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, and 2,4,5-trichlorophenoxypropionic acid. These embryos matured in MS medium containing Kinetin plus naphthalene acetic acid (NAA), Kinetin plus Zeatin, and Kinetin plus abscisic acid (ABA). Matured embryos could be germinated on LS and MS basal media without hormones. Non-embryogenic callus initiated on Linsmaier and Skoog’s (LS) medium from cotyledons of six different genotypes produced shoots (9 to 32%) on Murashige and Skoog’s (MS) medium fortified with 6-benzylaminopurine (BAP, 0.5 mg · liter−1), and BAP (1 mg · liter−1) plus NAA (0.1 mg · liter−1). These shoots were rooted with 100% frequency by using indole-3-acetic acid or NAA and transferred successfully to the soil.  相似文献   

12.
Direct shoot organogenesis and plant regeneration in safflower   总被引:1,自引:0,他引:1  
Summary  Adventitious shoot buds were induced directly on the adaxial surface of the cotyledons of eight safflower cultivars after 14 d of culture initiation on Murashige and Skoog's (MS) medium supplemented with various levels of 6-benzylaminopurine (BA). Maximum shoot organogenesis of 54.4% with 10.2 shoots per responding cotyledon was obtained with 8.87 μM BA in the cv. S-144. Regenerated shoots were classified into three groups on the basis of their morphological features and were found to be correlated with the levels of BA. The highest number of normal shoots was obtained from 2.2 μM BA treatment. The regenerated shoots of group I (normal shoots) were rooted on half-strength MS medium supplemented with 5.3 μM α-naphthaleneacetic acid, 3% sucrose and 0.8% bacto-agar. Rooted plantlets were successfully transferred to soil and appeared morphologically normal. Histological studies revealed that shoot buds originated adventitiously from subepidermal cells.  相似文献   

13.
Shoot organogenesis in Arabidopsis thaliana wasstudied with regard to the timing of key developmental phases and expression ofthe SHOOTMERISTEMLESS (STM) gene.Shoot regeneration in the highly organogenic ecotype C24 was affected byexplanttype and age. The percentage of C24 cotyledon explants producing shootsdecreased from 90% to 26% when donor seedlings were more than 6 dold, but 96% of root explants produced shoots regardless of the age of thedonorplant. Using explant transfer experiments, it was shown that C24 cotyledonexplants required about 2 days to become competent and another 8-10 days tobecome determined for shoot organogenesis. A C24 line containing the promoterofthe SHOOTMERISTEMLESS (STM) genelinked to the -glucuronidase(GUS) gene was used as a tool for determining the timingofde novo shoot apical meristem (SAM) development incotyledon and root explants. Cotyledon and root explants from anSTM:GUS transgenic C24 line were placed on shoot inductionmedium and GUS expression was examined after 6-16 days ofculture. GUS expression could be found in localizedregionsof callus cells on root and cotyledon explants after 12 days indicating thatthese groups of cells were expressing the STM gene, hadreached the key time point of determination, and were producing an organizedSAM. This was consistent with the timing of determination as indicated byexplant transfer experiments. Root explants from anSTM:GUStransgenic Landsberg erecta line and a two-step tissue culture method revealedasimilar pattern of localized GUS expression duringde novo shoot organogenesis. This is the first studydocumenting the timing and pattern of expression of theSTMgene during de novo shoot organogenesis.  相似文献   

14.
A novel protocol for indirect shoot organogenesis of Dieffenbachia cv. Camouflage was established using leaf explants excised from in vitro shoot cultures. The frequency of callus formation reached 96% for explants cultured on Murashige and Skoog (1962) basal medium supplemented with 5 μM thidiazuron and 1 μM 2,4-dichlorophenozyacetic acid. The number of shoots regenerated was high, with up to 7.9 shoots produced per callus cultured on basal medium supplemented with 40 μM N 6-(Δ2-isopentenyl)adenine and 2 μM indole-3-acetic acid. Regenerated shoots rooted well in a soilless substrate, acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions. Somaclonal variations in leaf variegation, color, and morphology have been observed in regenerated plants.  相似文献   

15.
A system for in vitro regeneration of Aloe arborescens was developed using young inflorescences as explants. Different phytohormone combinations of N-phenyl-N′-1,2,3-thiadiazol-5-yl urea (TDZ), benzyladenine (BA), 6-(γ,γ-dimethylallyl-amino)purine riboside (2iPR), zeatin ribozide (ZR), N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and kinetin (K), with or without ancymidol, were examined in order to induce plant regeneration. Efficient shoot regeneration was initiated on Murashige and Skoog (MS) medium supplemented with BA or TDZ. MS medium enriched with 19.6, 22.2 μM BA and 3.92 μM ancymidol (MSBA5/1 medium), promoted organogenesis enabling 87.3% of the explants to regenerate 6.04 ± 1.79 shoots/explant. Subsequent shoot elongation and plant regeneration were strongly affected by the medium composition used for shoot induction. Optimal elongation (three to four shoots per explant) was obtained when shoots, initiated on MSBA5/1 medium, were subsequently transferred onto MS containing only 4.4 μM BA. Rooting was performed on MS media lacking growth regulators. Histological analysis revealed that the initiated shoots originated from the receptacle tissue surrounding the residual vascular tissue of the flower buds.  相似文献   

16.
Summary Occurrence of somatic embryogenesis in in vitro cultures of Calamus merrillii and Calamus subinermis, two major largecaned rattan species, was scientifically demonstrated for the first time. Tissue responsiveness varied markedly according to the species and the type of primary explants used when initiated on 10.4–31.2 μM picloram-enriched Murashige and Skoog callus induction media. In C. merrillii, within 6 wk after inoculation, 84% of the leaf and 90% of the zygotic embryo explants produced friable embryogenic calluses, by contrast with those formed by 74% of the root explants. In C. subinermis, callogenesis was observed only 6 mo. after inoculation in 68% of root and 48% of zygotic explants. Leaf explants did not respond at all. Only root-derived calluses developed into nodular embryogenic structures. Irrespective of these initial differences, the further steps of the somatic embryogenesis developmental pattern was similar for both species. Histological analyses established that callus formation took place in the perivascular zones, and could give rise to embryogenic isolated cells from which the proembryos were derived. Reducing the picloram concentration stimulated the maturation process resulting ultimately in the germination of somatic embryos that exhibited bipolar development, despite an apparent lack of starch and protein reserves. The somatic embryo-derived plantlets of C. merrillii, overall more prone to somatic embryogenesis than C. subinermis in the given conditions, were successfully acclimatized to outdoor conditions.  相似文献   

17.
Benzyladenine (BAP) uptake and metabolism were characterized during the key stages of shoot organogenesis in leaf explants of Petunia MD1. Using leaf explant transfer experiments, it was shown that exposure to 2.2 M BAP for 6, 8 or 10 days induced shoot formation on 27, 80 and 100% of the explants respectively, with a concomitant increase in the number of shoots per explant. BAP uptake and metabolism were characterized in leaf explants after 1, 3, 6 or 10 days exposure to [3H]BAP or 10 days exposure plus an additional 2 days on basal medium (10+2). BAP and 9--D-ribofuranosyl-BAP ([9R]BAP) were detected at days 1 and 3 only. Therefore, the BAP free base was not detectable during the shoot induction period between days 6 and 10, as defined by leaf transfer experiments. The BAP ribotide pool was largest on day 1 and decreased to day 10+2. It is possible that the BAP ribotide pool provided either the active cytokinin itself or acted as a short-term storage form for the active cytokinin in petunia shoot organogenesis. Other metabolites detected in petunia leaf tissue included 7--D-glucopyranosyl-BAP ([7G]BAP), 9--D-glucopyranosyl-BAP ([9G]BAP) and an unidentified metabolite C.Abbreviations BAP benzyladenine - [7G]BAP 7--D-glucopyranosyl-BAP - [9G]BAP 9--D-glucopyranosyl-BAP - [9R]BAP 9--D-ribofuranosyl-BAP - [9R-5P]BAP 5-monophosphate of [9R]BAP - [9R-5PP]BAP 5-diphosphate of [9R]BAP - [9R-5PPP]BAP 5-triphosphate of [9R]BAP - TEA Triethylamine This research was supported in part by NSF Grant DCB-8917378 to J.D.C. and USDA-CRGO Grant 89-37261-4791 to T.J.C.  相似文献   

18.
Summary Embryogenic callus was induced from explanted pinnae of newly emerged leaves of mature plants ofCeratozamia mexicana var. Robusta (Gymnospermae, Cycadales) on a modified B5 formulation with 1 mg·liter−1 kinetin and 1 mg·liter−1 2,4-dichlorophenoxyacetic acid. Proembryos developed on induction medium, but they were more numerous after subculture onto phytohormone-free medium, which also enabled suspensors to elongate. For nearly 1.5 yr after explanting, subsequent development of somatic embryos was not observed as suspensors dedifferentiated to form embryogenic callus on phytohormone-free medium. After this time, cotyledonary somatic embryos developed at the distal end of the suspensors. Somatic embryos have germinated on phytohormone-free medium. This is the first report of regeneration by somatic embryogenesis of a gymnosperm species from a mature tree. This technique has great potential for preservation of the highly endangered cycads.  相似文献   

19.
Explants of four F1 hybrids (OMR 36-41/1, OMR 36-41/2, OMR 36-41/4 and OMR 36-41/5) and two cultivars (Rayong 1 and Rayong 60) of cassava (Manihot esculenta Crantz) were subjected to different combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (NAA), kinetin (KIN) and N6-benzylaminopurine (BAP) to induce somatic embryogenesis, organogenesis and micropropagation. Shoot apices of the F1 hybrids exhibited higher frequency (62 – 74 %) of proliferation of somatic embryos than the cultivars (21 – 43 %) in Murashige and Skoog basal medium supplemented with 8 mg dm−3 2,4-D and 0.5 mg dm−3 NAA. Nodal explants of regenerated plantlets were rapidly micropropagated with 90 % efficiency on a medium containing 0.1 mg dm−3 NAA and 0.05 mg dm−3 BAP irrespective of explant source. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Expression of the Agrobacterium rhizogenes rolC gene in Panax ginseng callus cells results in formation of tumors that are capable to form roots. The selection of non-root forming tumor clusters yielded the embryogenic 2c3 callus line, which formed somatic embryos and shoots independently of external growth factors. Although the 2c3 somatic embryos developed through a typical embryogenesis process, they terminated prematurely and repeatedly formed adventitious shoot meristems and embryo-like structures. A part of the shoots and somatic embryos formed enlarged and fasciated meristems. This is the first indication of the rolC gene embryogenic effect and, to our knowledge, the first indication that a single gene of non-plant origin can induce somatic embryogenesis in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号