首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
White clover plants were inoculated with transconjugant strain' 290 which was obtained from introduction of host specific nodulation genes of wild-type Rhizobium trifolii strain ANU 843 to Rhizobium leguminosarum strain 300. The characterization of root morphology of white clover induced by the transconjugant was observed and compared to the plants induced by the parent strains. White clover started tO form a typical root hair curling inoculated with transconjugant strain 290 24h after inoculation, at 48h a part of cell wall of root hair was degradated, infection thread was observed in the infected root hair cell, cortical cell divisions occurred extensively. All these characterizations were similar to that infected by strain ANU 843. Plant inoculation test indicated that no nodule was formed when inoculated by R. leguminosarum strain 300, while plants nodulated when inoculated with transconjugant strain 290 as well as R. trifolii ANU 843. This suggests that introduction of host specific nodulation genes of R. trifolii results in conferring the nodulation ability of R. leguminosarum on white clover.  相似文献   

2.
The structures of the acidic extracellular polysaccharides (EPSs) from several R. trifolii mutants were compared by examining their compositions and their sugar linkages as determined by methylation analysis. These mutant strains were derived from the wild-type R. trifolii ANU843 and were unable to induce normal root hair curling (Hac- phenotype) or nodulation response (Nod- phenotype) in clover plants. These strains included several transposon Tn5-induced Nod-mutants, strain ANU871, which possesses a 40 to 50 kilobase deletion of the resident Sym plasmid, and strain ANU845 which is missing the Sym plasmid (pSym-). Strains ANU845(pSym-) containing either plasmid pRt150 or pBR1AN were also used. The recombinant plasmid pRt150 restores only root hair curling capacity to ANU845 while plasmid pBR1AN (an R. trifolii pSym) restores both root hair curling and nodulation capacity to this strain. Our composition and methylation results show that the EPSs from all these strains have the same glycosyl and pyruvyl linkages. Thus we suggest that neither the nod genes involved in root hair curling nor the entire pSym encodes for the arrangement of glycosyl or pyruvyl residues in these EPSs. Whether or not the nod genes dictate the location of acetyl or β-hydroxybutyrate substituent groups remains to be determined.  相似文献   

3.
Rhizobium-Azospirillum interactions during establishment of Rhizobium-clover symbiosis were studied. When mixed cultures of Azospirillum and Rhizobium trifolii strains were simultaneously inoculated onto clover plants, no nodulation by R. trifolii was observed. R. trifolii ANU1030, which nodulated clover plants without attacking root hairs, i.e., does not cause root hair curling (Hac), did not show inhibition of nodulation when inoculated together with Azospirillum strains. Isolation of bacteria from surface-sterilized roots showed that azospirilla could be isolated both from within root segments and from nodules. Inhibition of nodulation could be mimicked by the addition of auxins to the plant growth medium.  相似文献   

4.
The 2,4-dichlorophenoxy acetic acid (2,4-D) degrading plasmid, pJP4, was transferred into Rhizobium trifolii ANU843 from its nature host Alcaligenes eutrophus JMP134 by conjugation. The ability to degrade 2,4-D was expressed in the transconjugant ANU843p as shown by a total loss of UV-absorbent compounds and by gas chromatographic analysis. However, the transconjugant was unable to grow on 2,4-D alone. When the transconjugant strain ANU843p was inoculated onto white and subterranean clover plants in laboratory trials, the transconjugant retained the capacity of nodulation, but the nitrogen-fixation activity was diminished, particularly in the case of subterranean clover. The plasmid in the transconjugant was stable in nodules for at least nine weeks after inoculation and could be of value in applications requiring the protection or removal of the 2,4-D involving cometabolism with plant substrates.  相似文献   

5.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

6.
Summary Three distinct loci (designated regions III, IV and V) were identified in the 14 kb Nod region of Rhizobium trifolii strain ANU843 and were found to determine the host range characteristics of this strain. Deletion of region III or region V only from the 14 kb Nod region affected clover nodulation capacity. The introduction to R. Leguminosarum of DNA fragments on multicopy vectors carrying regions III, IV and V (but not smaller fragments) extended the host range of R. leguminosarum so that infection threads and nodules occurred on white clover plants. The same DNA fragments were introduced to the Sym plasmid-cured strain (ANU845) carrying the R. meliloti recombinant nodulation plasmid pRmSL26. Plasmid pRmSL26 alone does not confer root hair curling or nodulation on clover plants. However, the introduction to ANU845 (pRmSL26) of a 1.4 kb fragment carrying R. trifolii region IV only, resulted in the phenotypic activation of marked root hair curling ability to this strain on clovers but no infection events or nodules resulted. Only the transfer of regions III, IV and V to strain ANU845 (pRmSL26) conferred normal nodulation and host range ability of the original wild type R. trifolii strain. These results indicate that the host range genes determine the outcome of early plant-bacterial interactions primarily at the stage of root hair curling and infection.  相似文献   

7.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

8.
Several transposon Tn5-induced mutants of the broad-host-range Rhizobium sp. strain NGR234 produce little or no detectable acidic exopolysaccharide (EPS) and are unable to induce nitrogen-fixing nodules on Leucaena leucocephala var. Peru or siratro plants. The ability of these Exo- mutants to induce functioning nodules on Leucaena plants was restored by coinoculation with a Sym plasmid-cured (Nod- Exo+) derivative of parent strain NGR234, purified EPS from the parent strain, or the oligosaccharide from the EPS. Coinoculation with EPS or related oligosaccharide also resulted in formation of nitrogen-fixing nodules on siratro plants. In addition, an Exo- mutant (ANU437) of Rhizobium trifolii ANU794 was able to form nitrogen-fixing nodules on white clover in the presence of added EPS or related oligosaccharide from R. trifolii ANU843. These results demonstrate that the absence of Rhizobium EPSs can result in failure of effective symbiosis with both temperate and subtropical legumes.  相似文献   

9.
The lipopolysaccharides (LPSs) from Rhizobium trifolii ANU843 and several transposon (Tn5) symbiotic mutants derived from ANU843 were isolated and partially characterized. The mutant strains are unable to induce normal root hair curling (Hac- phenotype) or nodulation (Nod-phenotype) in clover plants. The LPSs from the parent and mutants are very similar in composition. Analysis by PAGE shows that the LPSs consist of higher and lower molecular weight forms. The higher molecular weight form of the LPSs exists in several aggregation states when PAGE is done in 0.1% SDS but collapses into a single band when PAGE is done in 0.5% SDS. Mild acid hydrolysis of all the LPSs releases two polysaccharides, PS1 and PS2. Immunoblots of the PAGE gels and enzyme linked immunosorbant assay inhibition assays show that the PS1 fractions contain the immunodominant sites of the LPSs and that these sites are present in the higher molecular weight form of the LPSs. All the PS1 fractions contain methylated sugars, 2-amino-2,6-dideoxyhexose, heptose, glucuronic acid, and 2-keto-3-deoxyoctonic acid (KDO). All the PS2 fractions contain galacturonic acid, mannose, galactose, and KDO. The PS2 fractions have a molecular weight of about 700. The KDO is present at the reducing end of both the PS1 and the PS2 fractions. The PS1 and PS2 fractions from the mutants contain more glucose than these fractions from the parent. The LPS from a deletion mutant contains less acyl groups than the other LPSs. Immunoblots of the LPSs show that the parent and nod A mutant LPSs contain an additional antigenic band which is not observed in the other LPSs.  相似文献   

10.
Infection and nodulation of clover by nonmotile Rhizobium trifolii.   总被引:3,自引:0,他引:3       下载免费PDF全文
Nonmotile mutants of Rhizobium trifolii were isolated to determine whether bacterial motility is required for the infection and nodulation of clover. The nonmotile mutants were screened for their ability to infect and nodulate clover seedlings in Fahraeus glass slide assemblies, plastic growth pouches, and vermiculite-sand-filled clay pots. In each system, the nonmotile mutants were able to infect and nodulate clover.  相似文献   

11.
Two mutant derivatives of Rhizobium leguminosarum ANU843 defective in lipopolysaccharide (LPS) were isolated. The LPS of both mutants lacked O antigen and some sugar residues of the LPS core oligosaccharides. Genetic regions previously cloned from another Rhizobium leguminosarum wild-type isolate, strain CFN42, were used to complement these mutants. One mutant was complemented to give LPS that was apparently identical to the LPS of strain ANU843 in antigenicity, electrophoretic mobility, and sugar composition. The other mutant was complemented by a second CFN42 lps genetic region. In this case the resulting LPS contained O-antigen sugars characteristic of donor strain CFN42 and reacted weakly with antiserum against CFN42 cells, but did not react detectably with antiserum against ANU843 cells. Therefore, one of the CFN42 lps genetic regions specifies a function that is conserved between the two R. leguminosarum wild-type isolates, whereas the other region, at least in part, specifies a strain-specific LPS structure. Transfer of these two genetic regions into wild-type strains derived from R. leguminosarum ANU843 and 128C53 gave results consistent with this conclusion. The mutants derived from strain ANU843 elicited incompletely developed clover nodules that exhibited low bacterial populations and very low nitrogenase activity. Both mutants elicited normally developed, nitrogen-fixing clover nodules when they carried CFN42 lps DNA that permitted synthesis of O-antigen-containing LPS, regardless of whether the O antigen was the one originally made by strain ANU843.  相似文献   

12.
Summary A microscopic assessment is presented of the comparative infection capacity of wild-type and hybrid strains ofRhizobium leguminosarum bv.viciae withR. l. bv.trifolii strain ANU 843 on white clover seedlings. TheR. l. bv.viciae hybrid strains contained defined DNA segments coding for different combinations ofR. l. bv.trifolii host-specific nodulation genes. White clover plants were examined over a 72 h period to assessRhizobium infectivity, the morphological changes in root hair growth; colonisation ability of rhizobia; infection thread initiation and the ability to induce cortical cell division.R. l. bv.viciae strain 300 induced root hair curling more slowly than strain ANU 843 or any of the hybrid strain 300 bacteria, and when curling had taken place, there was poorer colonization by strain 300 within the folded hair cell, no evidence of infection thread formation and only limited cortical cell division 72 h after inoculation. The addition of the host-specific nodulation genes ofR. l. bv.trifolii to strain 300 was necessary to induce infection threads and establish a normal pattern of nodulation of the roots of white clovers.  相似文献   

13.
Summary Five specific transposon-induced nodulation defective (Nod) mutants from different fast-growing species ofRhizobium were used as the recipients for the transfer of each of several endogenous Sym(biosis) plasmids or for recombinant plasmids that encode early nodulation and host-specificity functions. The Nod mutants were derived fromR. trifolii, R. meliloti and from a broad-host-rangeRhizobium strain which is able to nodulate both cowpea (tropical) legumes and the non-legumeParasponia. These mutants had several common features (a), they were Nod on all their known plant hosts, (b), they could not induce root hair curling (Hac) and (c), the mutations were all located on the endogenous Sym-plasmid of the respective strain. Transfer to these mutants of Sym plasmids (or recombinant plasmids) encoding heterologous information for clover nodulation (pBR1AN, pRt032, pRt038), for pea nodulation (pJB5JI, pRL1JI::Tn1831), for lucerne nodulation (pRmSL26), or for the nodulation of both tropical legumes and non-legumes (pNM4AN), was able to restore root hair curling capacity and in most cases, nodulation capacity of the original plant host(s). This demonstrated a functional conservation of at least some genes involved in root hair curling. Positive hybridization between Nod DNA sequences fromR. trifolii and from a broad-host-rangeRhizobium strain (ANU240) was obtained to other fast-growingRhizobium strains. These results indicate that at least some of the early nodulation functions are common in a broad spectrum ofRhizobium strains.  相似文献   

14.
Rhizobium leguminosarum bv. trifolii T24 is ineffective in symbiotic nitrogen fixation, produces a potent antibiotic (referred to here as trifolitoxin) that is bacteriostatic to certain Rhizobium strains, and is very competitive for clover root nodulation (EA Schwinghamer, RP Belkengren 1968 Arch Mikrobiol 64: 130-145). The primary objective of this work was to demonstrate the roles of nodulation and trifolitoxin production in the expression of nodulation competitiveness by T24. Unlike wildtype T24, transposon mutants of T24 lacking trifolitoxin production were unable to decrease clover nodulation by an effective, trifolitoxin-sensitive strain of R. leguminosarum bv. trifolii. A non-nodulating transposon mutant of T24 prevented clover nodulation by a trifolitoxin-sensitive R. leguminosarum bv. trifolii when co-inoculated with a T24 mutant lacking trifolitoxin production. Neither mutant alone prevented nodulation by the trifolitoxin-sensitive strain. These results demonstrate that trifolitoxin production and nodulation are required for the expression of nodulation competitiveness by strain T24. A trifolitoxin-sensitive strain of R. meliloti did not nodulate alfalfa when co-inoculated with T24 and a trifolitoxin-resistant strain of R. meliloti. Thus, a trifolitoxin-producing strain was useful in regulating nodule occupancy on a legume host other than clover. Trifolitoxin production was constitutive in both minimal and enriched media. Trifolitoxin was found to inhibit the growth of 95% of all strains of R. leguminosarum bvs. trifolii, viceae, and phaseoli tested. Strains of all 13 biotypes of R. leguminosarum bv. trifolii were inhibited by trifolitoxin. Three strains of R. fredii were also inhibited. Strain T24 ineffectively nodulated 46 clover species, did not nodulate Trifolium ambiguum, and induced partially effective nodules on Trifolium micranthum. Since T24 produced partially effective nodules on T. micranthum and since a trifolitoxin-minus mutant of T24 induced ineffective nodules, trifolitoxin production is not the cause of the symbiotic ineffectiveness of T24.  相似文献   

15.
Strain ANU1173 is an acid-tolerant Rhizobium leguminosarum biovar trifolii strain that is able to nodulate subterranean clover plants growing in agar culture at pH 4.4 At pH 6.5, its symbiotic effectiveness in association with Trifolium subterraneum cv. Mt. Barker was 80% relative to that of strain ANU794, a Smr derivative of the commercial inoculant R. leguminosarum bv. trifolii TA1. Strain ANU1173 contained four indigenous megaplasmids, the smallest of these being the symbiotic (Sym) plasmid. The critical pH requirement for growth of strain ANU1173 in laboratory media was shown not to be associated with this plasmid. When the Sym plasmid of strain ANU1173(pSym-1173) was mobilized into a Nod- strain of R. leguminosarum bv. viciae, the plasmid conferred to the transconjugant a level of symbiotic effectiveness in association with T. subterraneum that was similar to that observed with ANU1173. The symbiotic effectiveness of strain ANU1173 was improved by first curing pSym-1173 (generating strain ANU1184) and replacing it with another R. leguminosarum bv. trifolii Sym plasmid, pBR1AN. Subterranean clover plants inoculated with strain ANU1184 (pBR1AN) exhibited a 35 or 53% increase in acetylene reduction activity and a 20 or 17% increase in dry weight when grown at pH 6.5 and pH 4.4, respectively, compared with plants inoculated with strain ANU1173 and grown under the same pH conditions. It was further shown that pBR1AN was stably maintained in strain ANU1184 under free-living and symbiotic conditions. These results indicate that it is possible to construct an acid-tolerant strain of R. leguminosarum bv. trifolii with an enhanced capacity for nitrogen fixation.  相似文献   

16.
17.
An extracellular metabolite purified from Rhizobium trifolii ANU843 was established as N-acetylglutamic acid (GluNAc) by 1H NMR and Fourier transform IR spectroscopy, gas chromatography/mass spectrometry of its methylated product, and organic synthesis. TLC analyses indicated that extracellular accumulation of GluNAc by R. trifolii ANU843 grown in defined BIII culture medium was dependent on induction of its bacterial nodulation (nod) genes and the positive regulatory gene nodD on its symbiotic plasmid. 1H NMR analyses showed less GluNAc in fractionated culture supernatants of nodL and nodM mutant derivatives of R. trifolii ANU843. GluNAc induced three morphological responses on axenic roots of white clover seedlings: (i) root hair branching; (ii) tip swelling followed by resumed elongation of root hairs; and (iii) a slight increase in foci of cortical cell divisions, which developed into nodule-like primordia. These biological activities of extracellular GluNAc from R. trifolii ANU843 were confirmed with authentic standards of GluNAc. These results indicate that extracellular accumulation of N-acetylglutamic acid is linked to flavone-dependent metabolism involving nodD, nodL, and nodM in R. trifolii ANU843. This constitutes the first report on the structure of a nod-dependent extracellular signal from R. trifolii that can affect root hair and nodule development in white clover and whose biological activity on this host has been confirmed with authentic standards.  相似文献   

18.
We have analyzed the nucleotide sequences of the nodX genes from two strains of Rhizobium leguminosarum bv. viciae able to nodulate Afghan peas (strains A1 and Himalaya) and from two strains of R. leguminosarum bv. trifolii (ANU843 and CSF). The nodX genes of strains A1 and ANU843 were shown to be functional for the induction of nodules on Afghan peas. To analyze the cause of phenotypic differences of strain A1 and strain TOM we have studied the composition of the lipochitin-oligosaccharides (LCOs) produced by strain A1 after induction by the flavonoid naringenin or various pea root exudates. The structural analysis of the LCOs by mass spectrometry revealed that strain A1 synthesizes a family of at least 23 different LCOs. The use of exudates instead of naringenin resulted only in quantitative differences in the ratios of various LCOs produced.  相似文献   

19.
Chromosomal virulence (chv) mutants of Agrobacterium tumefaciens have been reported to be deficient in binding to cells of zinnia, tobacco, and bamboo. The mutants are nonpathogenic on stems of Kalanchoë, sunflower, tomato, Jerusalem artichoke, and tobacco, but they cause tumors on tubers of Solanum tuberosum. We used a root cap cell binding assay to test ability of cells from individual plants of 13 different plant species to bind parent or chv mutant bacteria. The same plants were then inoculated to test for disease response. Cells from nine of the plant species were grossly deficient in their abilities to bind mutant bacteria, and the plants inoculated with mutant bacteria failed to form tumors. In contrast, root cap cells as well as root hairs and root surfaces of S. tuberosum, S. okadae, and S. hougasii bound chv mutant bacteria as well as wild type. Nevertheless, S. tuberosum roots inoculated with mutant bacteria did not develop tumors. Although S. okadae plants inoculated with mutant bacteria formed a few tumors, and S. hougasii developed as many tumors in response to chv mutants as in response to the parent strain, the tumors induced by mutant bacteria were smaller.  相似文献   

20.
The positive activation of several nodulation genes in strain ANU843 of Rhizobium leguminosarum biovar trifolii is mediated by the product of the nodD gene and by the interaction of NodD with plant-secreted inducer and anti-inducer compounds. We have mutagenized the nodD gene of strain ANU843 with nitrosoguanidine and have found that the ability of the mutated nodD products to interact with inducer and anti-inducer compounds is affected by the amino acid sequence in at least two key regions, including a novel area between amino acids 77 and 123. Several novel classes of mutants were recognized by phenotypic and molecular analysis of the mutant nodD genes. Classes 1 and 4 mutants were able to induce nodA expression independently of the addition of inducer and anti-inducer compounds and were unable to mediate autoregulation of the nodD gene. Classes 2 and 3 mutants retained several properties of the wild-type nodD, including the ability to interact with inducer and anti-inducer compounds and the capacity to autoregulate nodD expression. In addition, class 2 mutants showed an inducer-independent ability to mediate nodA expression to 10-fold higher levels over control strains. The class 3 mutant showed reactivity to compounds that had little or no inducing ability with the wild-type nodD. An alteration in NodD function was demonstrated with classes 2 and 3 mutants, which showed greatly enhanced ability to complement a Tn5-induced mutation in the nodD1 gene of strain NGR234 and to restore nodulation ability on the tropical legume siratro. Mutants of nodD possessing inducer-independent ability to activate nod gene expression (classes 1, 2, and 4) were capable of extending the host range of R. l. bv. trifolii to the nonlegume Parasponia. DNA sequence analysis showed that single base changes were responsible for the altered phenotypic properties of five of six mutants examined. Four of the six mutations affected amino acid residues in a putative receiver domain in the N-terminal end of the nodD protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号