共查询到20条相似文献,搜索用时 0 毫秒
1.
Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross
chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing
of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis,
in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders
including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily
well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal
development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum. 相似文献
2.
A report of the European C. elegans 2008 meeting, Seville, Spain, 29 March-2 April 2008. 相似文献
3.
Background
C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. 相似文献4.
5.
In this paper we present a new method for detecting block duplications in a genome. It is more stringent than previous ones in that it requires a more rigorous definition of paralogous genes and that it requires the paralogous proteins on the two blocks to be contiguous. In addition, it provides three criterion choices: (1) the same composition (i.e., having the same paralogues in the two windows), (2) the same composition and gene order, and (3) the same composition, gene order, and gene orientation. The method is completely automated, requiring no visual inspection as in previous methods. We applied it to analyze the complete genomes of S. cerevisiae and C. elegans. In yeast we detected fewer duplicated blocks than previously reported. In C. elegans, however, we detected more block duplications than previously reported, indicating that although our method has a more stringent definition of block duplication than previous ones, it may be more sensitive in detection because it considers every possible window rather than only fixed nonoverlapping windows. Our results show that block duplication is a common phenomenon in both organisms. The patterns of block duplication in the two species are, however, markedly different. The yeast shows much more extensive block duplication than the nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in the yeast the majority of block duplications occurred between chromosomes, while in the nematode most block duplications occurred within chromosomes. 相似文献
6.
7.
8.
A report on the 15th Biennial International C. elegans Conference, Los Angeles, USA, 25-29 June 2005. 相似文献
9.
10.
Marcelo Ortega-Riveros Iker De-la-Pinta Cristina Marcos-Arias Guillermo Ezpeleta Guillermo Quindós Elena Eraso 《Mycopathologia》2017,182(9-10):785-795
Invasive candidiasis is caused mainly by Candida albicans, but other Candida species have increasing etiologies. These species show different virulence and susceptibility levels to antifungal drugs. The aims of this study were to evaluate the usefulness of the non-conventional model Caenorhabditis elegans to assess the in vivo virulence of seven different Candida species and to compare the virulence in vivo with the in vitro production of proteinases and phospholipases, hemolytic activity and biofilm development capacity. One culture collection strain of each of seven Candida species (C. albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida metapsilosis, Candida orthopsilosis and Candida parapsilosis) was studied. A double mutant C. elegans AU37 strain (glp-4;sek-1) was infected with Candida by ingestion, and the analysis of nematode survival was performed in liquid medium every 24 h until 120 h. Candida establishes a persistent lethal infection in the C. elegans intestinal tract. C. albicans and C. krusei were the most pathogenic species, whereas C. dubliniensis infection showed the lowest mortality. C. albicans was the only species with phospholipase activity, was the greatest producer of aspartyl proteinase and had a higher hemolytic activity. C. albicans and C. krusei caused higher mortality than the rest of the Candida species studied in the C. elegans model of candidiasis. 相似文献
11.
12.
Part of the challenge of the post-genomic world is to identify functional elements within the wide array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and functional conservation is not clear. Here, we use a comparative approach to examine questions of evolutionary rates and conserved function within the guanine nucleotide-binding protein (G protein) gene family in nematodes of the genus Caenorhabditis. In particular, we show that, in cases where the Caenorhabditis elegans ortholog shows a loss-of-function phenotype, G protein genes of C. elegans and Caenorhabditis briggsae diverge on average three times more slowly than G protein genes that do not exhibit any phenotype when mutated in C. elegans, suggesting that genes with loss of function phenotypes are subject to stronger selective constraints in relation to their function in both species. Our results also indicate that selection is as strong on G proteins involved in environmental perception as it is on those controlling other important processes. Finally, using phylogenetic footprinting, we identify a conserved non-coding motif present in multiple copies in the genomes of four species of Caenorhabditis. The presence of this motif in the same intron in the gpa-1 genes of C. elegans, C. briggsae and Caenorhabditis remanei suggests that it plays a role in the regulation of gpa-1, as well as other loci.Electronic Supplementary Material Supplementary material is available for this article at 相似文献
13.
Background
Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence. 相似文献14.
15.
16.
Summary A liquid-based assay was used to evaluate the ability of Yersinia pseudotuberculosis to form a bacterial biofilm on the nematode Caenorhabditis elegans. After 3 days of incubation in the liquid assay a biofilm was clearly visible by light microscopy on both the head and vulva region of the worms. At times, the biofilm formation on the vulva appeared to prevent the laying of eggs by the adult hermaphrodite; the eggs would later hatch inside of the worm. One possible explanation for the biofilm formation observed on the vulva may be the increased motion of the cuticle surrounding the vulva when the worm is immersed in a liquid culture. This is the first report of biofilm formation on the vulva of C. elegans. 相似文献
17.
18.
Background
Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. 相似文献19.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
20.
Monica G. Risley Stephanie P. Kelly Justin Minnerly Kailiang Jia Ken Dawson-Scully 《Invertebrate neuroscience : IN》2018,18(2):8
Increased neuronal excitability causes seizures with debilitating symptoms. Effective and noninvasive treatments are limited for easing symptoms, partially due to the complexity of the disorder and lack of knowledge of specific molecular faults. An unexplored, novel target for seizure therapeutics is the cGMP/protein kinase G (PKG) pathway, which targets downstream K+ channels, a mechanism similar to Retigabine, a recently FDA-approved antiepileptic drug. Our results demonstrate that increased PKG activity decreased seizure duration in C. elegans utilizing a recently developed electroconvulsive seizure assay. While the fly is a well-established seizure model, C. elegans are an ideal yet unexploited model which easily uptakes drugs and can be utilized for high-throughput screens. In this study, we show that treating the worms with either a potassium channel opener, Retigabine or published pharmaceuticals that increase PKG activity, significantly reduces seizure recovery times. Our results suggest that PKG signaling modulates downstream K+ channel conductance to control seizure recovery time in C. elegans. Hence, we provide powerful evidence, suggesting that pharmacological manipulation of the PKG signaling cascade may control seizure duration across phyla. 相似文献