首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Ovarian cancer (OC) is the most lethal gynaecological malignancy, characterized by high recurrence and mortality. However, the mechanisms of its pathogenesis remain largely unknown, hindering the investigation of the functional roles. This study sought to identify key hub genes that may serve as biomarkers correlated with prognosis. Here, we conduct an integrated analysis using the weighted gene co-expression network analysis (WGCNA) to explore the clinically significant gene sets and identify candidate hub genes associated with OC clinical phenotypes. The gene expression profiles were obtained from the MERAV database. Validations of candidate hub genes were performed with RNASeqV2 data and the corresponding clinical information available from The Cancer Genome Atlas (TCGA) database. In addition, we examined the candidate genes in ovarian cancer cells. Totally, 19 modules were identified and 26 hub genes were extracted from the most significant module (R2 = .53) in clinical stages. Through the validation of TCGA data, we found that five hub genes (COL1A1, DCN, LUM, POSTN and THBS2) predicted poor prognosis. Receiver operating characteristic (ROC) curves demonstrated that these five genes exhibited diagnostic efficiency for early-stage and advanced-stage cancer. The protein expression of these five genes in tumour tissues was significantly higher than that in normal tissues. Besides, the expression of COL1A1 was associated with the TAX resistance of tumours and could be affected by the autophagy level in OC cell line. In conclusion, our findings identified five genes could serve as biomarkers related to the prognosis of OC and may be helpful for revealing pathogenic mechanism and developing further research.  相似文献   

4.
Summary We have constructed several plasmid expression vectors to express foreign genes in stably transformed insect cells. Unlike baculovirus-based expression vectors by which genes of interest are expressed transiently before lysis of the virus-infected cells, genes can be expressed continuously over many passages in a stable cell line. Furthermore, the function of a gene or genes expressed in a stable cell line from an insect-specific promoter that is constitutively expressed can be studied in the absence of virus infection and viral gene expression. In this study, we have expressed a novel, selectable marker gene, puromycin acetyltransferase, under the control of the Drosophila melanogaster hsp70 promoter or under the control of the AcMNPV ie-1 promoter which is active in Spodoptera frugiperda cells in the absence of virus infection. In addition, we have constructed expression vectors which coexpress two genes from separate promoters, the pac gene which confers resistance to puromycin and a baculovirus gene which inhibits apoptosis, derived from Orygia pseudotsugata nuclear polyhedrosis virus. Both genes were expressed in stable populations of S. frugiperda cells in the absence of continuous drug selection.  相似文献   

5.
6.
Objectives: To test whether genetic instability may determine whether tumours become aneuploid or diploid. Materials and methods: We have identified genes needed for cell survival or replication by combining Affymetrix gene expression array data from 12 experimental cell lines with in silico GEO+GNF and expO databases. Specific loss of heterozygosis (LOHs), chromosomal abnormalities (called derivative chromosomes) and numbers of normal homologues were identified by SNP and SKY analyses. Random gene losses were calculated under the assumption that bi‐allelic MMR gene inactivation causes a 20‐fold increase in rate of gene loss. Results: There were ~1.23 × 104 genes widely dispersed throughout the genome and possibly expressed by all cells for survival or proliferation, many of these genes performed housekeeping functions. Conservation of the genes may explain the complete haploid genomes found for 15 different cell types and derivative chromosomes selectively retained in aneuploid cancer cell lines after LOH formations, and normal homologue losses. Loss of cell survival/replication genes was calculated to be higher in colon stem cells of carriers of MMR gene mutations than carriers of APC gene mutations. Conclusion: Random loss of cell survival/replication genes was calculated to be low enough for colon stem cells with APC gene mutations to ‘select’ LOH and derivative chromosome combinations favouring tumour cell proliferation. However, cell survival/replication gene loss was calculated to be too high for colonic stem cells lacking MMR genes to survive chromosomal instability, explaining why MMR mutations only produce tumours with diploid chromosome cells.  相似文献   

7.

Background

Alternative macrophages (M2) express the cluster differentiation (CD) 206 (MCR1) at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages) gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23). The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6).

Results

MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005) in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3). AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures.

Conclusion

A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.  相似文献   

8.
In this study global changes in gene expression were monitored in Bacillus subtilis cells entering stationary growth phase owing to starvation for glucose. Gene expression was analysed in growing and starving cells at different time points by full-genome mRNA profiling using DNA macroarrays. During the transition to stationary phase we observed extensive reprogramming of gene expression, with ~1000 genes being strongly repressed and ~900 strongly up-regulated in a time-dependent manner. The genes involved in the response to glucose starvation can be assigned to two main classes: (i) general stress/starvation genes which respond to various stress or starvation stimuli, and (ii) genes that respond specifically to starvation for glucose. The first class includes members of the B-dependent general stress regulon, as well as 90 vegetative genes, which are strongly down regulated in the course of the stringent response. Among the genes in the second class, we observed a decrease in the expression of genes encoding proteins required for glucose uptake, glycolysis and the tricarboxylic acid cycle. Conversely, many carbohydrate utilisation systems that depend on phosphotransferase systems (PTS) or ABC transporters were activated. The expression of genes required for utilisation or generation of acetate indicates that acetate constitutes an important energy source for B. subtilis during periods of glucose starvation. Finally, genome wide mRNA profiling data can be used to predict new metabolic pathways in B. subtilis. Thus, our data suggest that glucose-starved cells are able to degrade branched-chain fatty acids to pyruvate and succinate via propionyl-CoA using the methylcitrate pathway. This pathway appears to link lipid degradation to gluconeogenesis in glucose-starved cells.This revised version was published online in May 2005 with corrections to the list of authors  相似文献   

9.
10.
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S‐transferase (GST) activity. In previous research, two atrazine‐resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine‐glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity‐purified fractions compared to an atrazine‐sensitive population (WCS). One‐dimensional electrophoresis of these fractions displayed an approximate 26‐kDa band, typical of GST subunits. Several phi‐ and tau‐class GSTs were identified by LC‐MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi‐class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.  相似文献   

11.
肿瘤治疗中的多细胞耐受性与三维细胞培养   总被引:1,自引:0,他引:1  
肿瘤治疗中的多细胞耐受性是由于体内肿瘤具有三维结构而产生的对药物、射线等作用的耐受性。近年来人们利用体外三维细胞培养技术研究多细胞耐受性,发现其机制主要为三维结构相关的耐受性和接触性耐受性,并发现一些逆转或减弱多细胞耐受性的方法,显示了其作为临床肿瘤单独治疗或联合治疗的应用前景。  相似文献   

12.
The molecular mechanisms involved in the establishment and maintenance of sponge photosymbiosis, and in particular the association with cyanobacteria, are unknown. In the present study we analyzed gene expression in a common Mediterranean sponge (Petrosia ficiformis) in relation to its symbiotic (with cyanobacteria) or aposymbiotic status. A screening approach was applied to identify genes expressed differentially in symbiotic specimens growing in the light and aposymbiotic specimens growing in a dark cave at a short distance from the illuminated specimens. Out of the various differentially expressed sequences, we isolated two novel genes (here named PfSym1 and PfSym2) that were up-regulated when cyanobacterial symbionts were harbored inside the sponge cells. The sequence of one of these genes (PfSym2) was found to contain a conserved domain: the scavenger receptor cysteine rich (SRCR) domain. This is the first report on the expression of sponge genes in relation to symbiosis and, according to the presence of an SRCR domain, we suggest possible functions for one of the genes found in the sponge-cyanobacteria symbiosis.  相似文献   

13.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

14.
15.
The emergence of multidrug resistance (MDR), extensively drug-resistant, and total drug-resistant Mycobacterium tuberculosis (Mtb) strains have hampered the treatment of tuberculosis (TB). Capreomycin and Bedaquiline are currently used for MDR-TB treatment. To understand the impact of these antibiotics on Mtb genes, we have curated the gene expression data where the Mtb cultures were exposed to the Bedaquiline and Capreomycin. Based on the P value cut off (<0.05) and logFC (<−0.5 and >+0.5) values, we have selected the top differentially expressed genes during the antibiotic exposures. We have observed that the top differentially expressed Mtb genes were related to universal stress genes, two-component regulatory systems, and drug efflux pumps. We have curated the Mtb gene datasets and carried out the functional over-representation analysis using the individual gene expression values. We further, constructed the gene interaction networks of antibiotic resistance genes and virulence genes of Mtb to understand the impact of the antibiotics at the molecular level and thus to understand the antimicrobial resistance and virulence patterns. Our study elucidates the impact of antibiotics on the Mtb genes at the molecular level and the positively enriched pathways, operons, and regulons data are helpful in understanding the resistance patterns in Mtb. The upregulated genes during the exposure of Bedaquiline and Capreomycin can be considered as potent drug targets for the development of new anti-TB drugs.  相似文献   

16.
Several genes in the Agrobacterium tumefaciens transferred (T)‐DNA encode proteins that are involved in developmental alterations, leading to the formation of tumours in infected plants. We investigated the role of the protein encoded by the Atu6002 gene, the function of which is completely unknown. Atu6002 expression occurs in Agrobacterium‐induced tumours, and is also activated on activation of plant cell division by growth hormones. Within the expressing plant cells, the Atu6002 protein is targeted to the plasma membrane. Interestingly, constitutive ectopic expression of Atu6002 in transgenic tobacco plants leads to a severe developmental phenotype characterized by stunted growth, shorter internodes, lanceolate leaves, increased branching and modified flower morphology. These Atu6002‐expressing plants also display impaired response to auxin. However, auxin cellular uptake and polar transport are not significantly inhibited in these plants, suggesting that Atu6002 interferes with auxin perception or signalling pathways.  相似文献   

17.
Previous microarray studies have revealed a broad range of genes which are regulated by VHL and have provided much insight into how VHL may function as a tumour suppressor gene ([Wykoff et al., 2000b] and [Zatyka et al., 2002]). The current study has highlighted several genes of interest which are not currently recognised as being regulated by VHL. Of the candidate VHL regulated genes that we identified ASS was selected for further study due to its therapeutic implications. Tumours with low ASS levels display a reduced capacity to synthesise arginine, and as such are reliant on extracellular arginine for normal cellular function. Promising results in mouse xenograft models have shown that arginine deprivation may be a useful treatment strategy for these tumours. Understanding how ASS expression levels are regulated should provide insight into which tumour types would be most sensitive to treatment with arginine degrading enzymes. In this study we provide strong evidence that VHL status regulates ASS expression levels in three independent CCRCC cell backgrounds. Regulation of ASS by VHL/HIF suggests that arginine deprivation may be useful in the treatment of VHL defective CCRCCs and non-renal hypoxic tumours.  相似文献   

18.
Allopolyploidy alters gene expression in the highly stable hexaploid wheat   总被引:32,自引:0,他引:32  
Hexaploid wheat (Triticum aestivum) contains triplicated genomes derived from three distinct species. To better understand how different genomes are coordinated in the same nucleus of the hexaploid wheat, we globally compared gene expression of a synthetic hexaploid wheat with its diploid (Aegilops tauschii) and tetraploid (T. turgidum) parents by cDNA-AFLP display. The results suggested that the expression of a significant fraction of genes was altered in the synthetic hexaploid; most appeared to be diminished and some were activated. We characterized nine cDNA clones in details. Cytogenetic as well as genomic sequence analyses indicated that the gene silencing was not due to chromosome/DNA loss but was caused by gene regulation. Northern and RT-PCR divided these genes into three groups: (I) four genes were down-regulated nonspecifically, likely involving both parental orthologues; (II) four genes were down-regulated in an orthologue-dependent manner; (III) one gene was activated specifically in the synthetic hexaploid wheat. These genes were often altered non-randomly in different synthetic hexaploids as well as natural hexaploid wheat, suggesting that many of the gene expression changes were intrinsically associated with polyploidy.  相似文献   

19.
DNA methylation is an epigenetic phenomenon associated with gene silencing in transgenic plants, retrotransposons and virus infection. Expression analysis of specific genes in Arabidopsis methylation mutants showed an association between DNA methylation and gene expression. To determine whether DNA methylation is associated with resistance to black Sigatoka (BS) andMycosphaerella fijiensis (MF), we used anin vitro assay of mesophyll cell suspensions of reference cultivars with known resistance to BS. Methylation of CCmGG sequences was evaluated by methylation-sensitive amplification polymorphism (MSAP) markers of reference cultivars and somaclonal variants to identify molecular markers associated with resistance to MF toxins and BS. Four MSAP markers were associated with resistance (MAR) to MF toxins. The MSAP markers show a high degree of sequence similarity with resistance gene analog and with retrotransposon sequences. The MSAP markers are useful as molecular indicators of tolerance to MF toxins and resistance to BS.  相似文献   

20.
A computer-based differential display tool named HsAnalyst has been developed and successfully used for the comparison of expression patterns in a set of tumours versus a set of normal tissues. A list of EST clusters highly represented in tumours and rarely observed in normal tissues has been developed as a resulting output file of the program. These differentially expressed EST clusters (genes) can be useful for developing new tumour markers and prognostic indicators for a wide set of human malignancies. Tumour-specific protein-coding genes may be considered a manifestation of tumour-specific gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号