首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of taurine supplementation on GABA-related amino acid homeostasis in developing nervous tissues of suckling rats were studied. In the first two weeks of postnatal growth, cerebral cortex and cerebellum appear more accessible to taurine supplementation in comparison to retina; in addition, different changes in excitatory/inhibitory amino acids were observed. After the 5th day of life, in the retina and cerebellum of taurine-supplemented pups a decrease in GABA levels was found; in contrast, in cerebral cortex GABA content significantly increased throughout 20 days of postnatal growth. In all nervous tissues studied (except for cerebellum) glutamine concentration increased at the 5th day; then in cerebellum and in retina, but not in cerebral cortex, a significant decrease until the 20th day occurred. Furthermore, in cerebellum and retina taurine supplementation decreased glutamate levels, in comparison to controls, at the 10th and until the 20th day of postnatal life, respectively, whereas in cerebral cortex an increase in glutamate level was observed only at the 5th day. In conclusion, taurine supplementation, in excess to the usual amount from the mother's milk, affected the glutamate compartments in various cell types. The changes in GABA-related amino acid concentrations in cerebral cortex, cerebellum, and retina may depend on the different pattern of the metabolic processes at different maturative stages.  相似文献   

2.
Sojourners to high altitude experience poor-quality of sleep due to hypobaric hypoxia (HH). Brain neurotransmitters are the key regulators of sleep wakefulness. Scientific literature has limited information on the role of brain neurotransmitters involved in sleep disturbance in HH. The present study aimed to investigate the time dependent changes in neurotransmitter levels and enzymes involved in the biosynthesis of brain neurotransmitters in frontal cortex, brain stem, cerebellum, pons and medulla and the effect of these alterations on sleep architecture in HH. Thirty adult Sprague-Dawley rats, body weight of 230-250 g were exposed to simulated altitude ~7620 m, 282 mm Hg, partial pressure of O(2) 59 mm Hg for 7 and 14 days continuously in an animal decompression chamber. After 7 and 14 days of HH, brain nor-epinephrine and dopamine levels were significantly increased in frontal cortex, brain stem, cerebellum and pons and medulla whereas serotonin level was significantly reduced in frontal cortex and pons and medulla after 14 days of HH. Tyrosine hydroxylase level in locus coeruleus (LC) was significantly increased whereas Choline Acetyl Transferase and Glutamic Acid Decarboxylase (GAD) levels were significantly reduced in laterodorsal-tegmentum and pedunculopontine-tegmentum after 7 days of HH. GAD was also reduced in LC after 7 days HH. Alteration in these neurotransmitters and enzyme levels was accompanied with reduction in quality and quantity of sleep. There was a significant increase in sleep latency, rapid eye movement (REM) latency, duration of active awake, quiet awake, quiet sleep and a significant decrease in duration of REM sleep and deep sleep on day 7 and 14 of HH. It was concluded that HH alters the expression of enzymes linked to sleep neurotransmitter synthesis pathway and subsequent loss of homeostasis at neurotransmitter level disrupts the sleep pattern in hypobaric hypoxia.  相似文献   

3.
Electrolytic lesion of the ascending serotonergic fibers in the median raphe nucleus or in both the median raphe nucleus and dorsal raphe nucleus caused after 18 days more than 80% depletion of serotonin in the hippocampus and frontal cortex, respectively, without affecting norepinephrine and acetylcholine contents. alpha 1-Adrenoceptor binding of (3H) WB-4104 was increased in the hippocampus but not in the frontal cortex. Scatchard analysis revealed that the increase in (3H) WB-4101 binding in the lesioned hippocampus was the result of an elevated density of alpha 1-adrenergic receptors of about 65%. This phenomenon began 8 days postlesion and persisted for at least 90 days postlesion. Similar qualitative and quantitative results were obtained following chemical lesion of the serotonergic cells of origin in the median raphe nucleus with 5,7-dihydroxytryptamine. Selectivity of the phenomenon was further demonstrated as or beta-adrenoceptor binding with (3H) dihydroalprenolol and cholinergic muscarinic receptor binding with (3H) dexetimide were not significantly affected in the hippocampus. By comparison, when norepinephrine in the hippocampus was depleted by more than 90% by bilateral lesion of the ascending noradrenergic fibers with 6-hydroxydopamine (18 days), the alpha 1-adrenoceptor number was significantly increased by only about 20% while the beta-adrenoceptor number was enhance by 40%. The area-selective increase in alpha 1-adrenoceptor number in the hippocampus in the presence of unchanged norepinephrine content and in the absence of serotonin probably signifies that serotonin actively participates in the modulation of the noradrenergic receptor population.  相似文献   

4.
Abstract: The effects of α-linolenic acid diet deficiency on rat dopaminergic and serotoninergic neurotransmission systems were investigated in the frontal cortex, striatum, and cerebellum of male rats 2, 6, 12, and 24 months of age. The diet deficiency induced a severe decrease in the 22:6n-3 fatty acid levels in all regions and a compensatory increase in n-6 fatty acid levels. A recovery in the levels of 22:6n-3 was observed in deficient rats between 2 and 12 months of age; however, this recovery was lower in frontal cortex than in striatum and cerebellum. In the striatum and the cerebellum, dopaminergic and serotoninergic receptor densities and endogenous dopamine and serotonin levels were affected by aging regardless of the diet. In contrast, a 40–75% lower level of endogenous dopamine in the frontal cortex occurred in deficient rats according to age. The deficiency also induced an 18–46% increase in serotonin 5-HT2 receptor density in the frontal cortex during aging, without variation in endogenous serotonin level, and a 10% reduction in density of dopaminergic D2 receptors. Monoamine oxidase-A and -B activities showed specific age-related variations but regardless of the diet. Our results suggest that a chronically α-linolenic-deficient diet specifically affects the monoaminergic systems in the frontal cortex.  相似文献   

5.
We have previously demonstrated an increase in adult brain DNA content in rats adrenalectomized on postnatal day 11. The present studies examined cell proliferation in cerebral cortex, cerebellum, hippocampus, and midbrain-diencephalon following adrenalectomy at this age. Compared to sham-operated controls, adrenalectomized animals showed increased [3H]thymidine incorporation into DNA (measured at 1 h following a pulse injection) in all brain regions at 7 and 14 days postsurgery. In some areas, the effect was already present as early as 2 days following adrenalectomy. Chronic replacement with corticosterone prevented this increase in DNA labelling in a dose-dependent manner. When cell proliferation in the cerebral cortex and cerebellum was independently assessed by measuring changes in thymidine kinase activity, enzyme activity was significantly elevated in both areas at 7 and 14 days postsurgery. Finally, histological examination of the cerebellar cortex suggested a delayed disappearance of the external granular layer in several cerebellar lobules of adrenalectomized animals. Overall, these findings indicate that day-11 adrenalectomy leads to a prolonged stimulation of mitotic activity in areas where cell formation at this time is exclusively glial (i.e., cerebral cortex and mid-brain-diencephalon) as well as in areas where postnatal neurogenesis is also occurring (cerebellum and hippocampus). It is hypothesized that this stimulation results from the removal of a tonic inhibitory effect exerted by circulating glucocorticoids in the normal intact animal.  相似文献   

6.
The levels of the S-100 and 14-3-2 proteins were determined in a number of regions of mouse brain at intervals from 1 day to 30 months of age. Both S-100 and 14-3-2 were found in measurable amounts as early as the first day of postnatal age but did not begin to accumulate rapidly in the forebrain, brain stem and cerebellum of the mouse brain until some time between the 7th and 14th days. From days 14 to 28 the levels of S-100 and 14-3-2 in each region continued to increase rapidly with the exception of the forebrain where the rate of accumulation of S-100 appeared to lag considerably behind that in the other regions. The proteins continued to accumulate at a rapid rate until approximately 6 months of age. From 6 to 30 months of age, the levels of 14-3-2 remained relatively stable in cerebellum, hippocampus and hypothalamus and appeared to decrease slightly in striatum and cerebral cortex. In the case of S-100, the level of the protein increased in all regions of brain from 6 to 30 months but the increase was most pronounced in the hippocampus, hypothalamus and striatum. The principal conclusion derived from this study is that the biochemical development and aging of the central nervous system are regionally selective processes.  相似文献   

7.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

8.
Abstract: The number of β1-adrenergic receptor (β1AR) binding sites is decreased by chronic antidepressant treatments, including electroconvulsive seizure (ECS) and imipramine, whereas administration of agents that deplete norepinephrine (NE) increases the number of β1AR binding sites in cerebral cortex. The present study was carried out to examine the influence of these treatments on levels of β1 AR mRNA in frontal cortex to study the molecular mechanisms that underlie the regulation of β1 ARs in brain. Levels of β1 AR mRNA were measured by RNase protection analysis using a riboprobe derived from rat β1AR cDNA, and the levels of βAR binding were measured using the nonselective ligand [3H]CGP-12177. Studies to verify the specificity of the RNase protection assay revealed that the distribution of β1AR mRNA was in agreement with the reported distribution of β1AR ligand binding: Levels of β1AR mRNA were highest in cerebral cortex or frontal cortex, intermediate in neostriatum, hippocampus, lung, and heart, and lowest in cerebellum, kidney, and liver. Chronic ECS treatment (once daily for 10 days) significantly decreased levels of βAR ligand binding and resulted in a corresponding, time-dependent down-regulation of β1AR mRNA levels in frontal cortex. However, imipramine administration regulated levels of β1AR mRNA in a biphasic manner, with treatments for 7–14 days increasing and treatments for 18–21 days decreasing levels of β1AR mRNA in frontal cortex. In contrast, levels of [3H]CGP-12177 ligand binding were decreased at all time points examined (3–21 days). The influence of NE depletion, using the neurotoxin 6-hydroxy-dopamine (6-OHDA), on levels of β1AR mRNA was also examined. Three days after 6-OHDA treatment, levels of [3H]CGP-12177 ligand binding were not altered, but 7–14 days after neurotoxin treatment, levels of ligand binding were significantly increased. In contrast, 3–9 days after 6-OHDA treatment, levels of β1AR mRNA were significantly decreased, and 14 days after treatment, levels of β1AR mRNA returned to control values. The results demonstrate that β1AR mRNA and ligand binding are regulated in parallel by ECS treatment but that levels of receptor mRNA are regulated in a complex manner by imipramine or 6-OHDA treatments, not predicted by changes in ligand binding.  相似文献   

9.
Carbamazepine (25 mg/kg body weight) was administered intraperitoneally to adult male Wistar rats for 45 days and norepinephrine (NE), dopamine (DA) and serotonin (5-HT) levels were simultaneously assayed in discrete brain regions by high performance liquid chromatographic (HPLC) method. Experimental rats displayed no behavioral abnormalities. Body and brain weights were not significantly different from control group of rats. After exposure it was observed that norepinephrine levels were elevated in motor cortex (P<0.01) and cerebellum (P<0.05), while dopamine levels were decreased in these two regions (P<0.001, P<0.05). However, dopamine levels were increased in hippocampus (P<0.01). Serotonin levels were significantly decreased in motor cortex (P<0.001) and hypothalamus (P<0.001) but increased in striatum-accumbens (P<0.001) and brainstem (P<0.001). These results suggest that carbamazepine may mediate its anticonvulsant effect by differential alterations of monoamine levels in discrete brain regions particularly in motor cortex and cerebellum.  相似文献   

10.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

11.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

12.
Abstract: Tissue concentrations of uric acid were determined in the spinal cord, cerebellum, caudate-putamen, and cerebral cortex of developing mice following intraventricular inoculation with murine cytomegalovirus (MCMV) on postnatal day 10. Transient signs of neurological impairment were observed in MCMV-infected animals beginning on days 13–16 and continuing until days 19–21. At the onset of neurological impairment, uric acid concentrations in tissues from infected animals were 17–60-fold greater than in control animals. On postnatal day 70, 60 days after inoculation and 40 days after resolution of neurological signs, uric acid levels were still two- to threefold greater in infected animals. Histological examination revealed signs of focal ischemia in the cerebral and cerebellar cortices of MCMV-infected mice only at the onset of neurological impairment, with ischemic cell changes in some pyramidal neurons of the cerebral cortex. These results indicate that uric acid may be a sensitive marker of persistent vascular pathology resulting from cytomegalovirus infection of the developing nervous system  相似文献   

13.
The binding of 125I-LSD (2-[125I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125I-LSD enabled the injection of low mass doses (14 ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125I-LSD. Serotonergic compounds potently inhibited 125I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies we conclude that 125I-LSD labels serotonin 5-HT2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125I-LSD labeling occurs predominantly or entirely at serotonin 5-HT2 sites. In the striatum, 125I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. This data indicates that 125I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT2 receptors in the mammalian cortex.  相似文献   

14.
The postnatal development of [3H]dihydroalprenolol binding to beta-adrenergic receptors has been studied in frontal cortex, cerebellum, striatum, and hypothalamus of the rat after prenatal and perinatal exposure to diazepam. Dams were injected subcutaneously with single daily doses of 1 mg of diazepam/kg from day 7 to 20 of gestation or from day 15 of gestation to day 6 after birth. Prenatal exposure had no effect on litter size or length of gestation or on the postnatal development of body and brain weights of the progeny. However, a reduced mortality of the pups was observed in relation to vehicle-treated controls until postnatal day 10. Prenatal diazepam administration decreased [3H]dihydroalprenolol binding in frontal cortex, striatum, and hypothalamus but not in cerebellum. This decrease in beta-adrenergic receptor binding was due to a decrease in receptor density rather than in receptor affinity. In contrast, perinatal diazepam exposure led to a transient decrease in [3H]dihydroalprenolol binding limited to the frontal cortex. The permanent reduction in number of beta-adrenergic receptors, which depends on the scaling and duration of the drug application period, points to the necessity of a prolonged evaluation of effects of exposure to psychotropic drugs in early stages of brain development.  相似文献   

15.
We studied the effect of local administration of nicotine on the release of monoamines in striatum, substantia nigra, cerebellum, hippocampus, cortex (frontal, cingulate), and pontine nucleus and on the release of glutamic acid in striatum of rats in vivo, using microdialysis for nicotine administration and for measuring extracellular amine and glutamic acid levels. Following nicotine administration the extracellular concentration of dopamine, increased in all regions except cerebellum; serotonin increased in cingulate and frontal cortex; and norepinephrine increased in substantia nigra, cingulate cortex, and pontine nucleus. Cotinine, the major nicotine metabolite, had no effect at similar concentrations. The cholinergic antagonists mecamylamine and atropine, the dopaminergic antagonists haloperidol and sulpiride, and the excitatory amino acid antagonist kynurenic acid all inhibited the nicotine-induced increase of extracellular dopamine in the striatum. The fact that kynurenic acid almost completely prevented the effects of nicotine, and nicotine at this concentration produced a 6-fold increase of glutamic acid release, suggests that the effect of nicotine is mainly mediated via glutamic acid release.  相似文献   

16.
Developmental changes of preprocholecystokinin mRNA (CCK mRNA) and cholecystokinin-like immunoreactivity (CCK-LI) were examined in rat brain regions (frontal cortex, colliculi, hippocampus, striatum, and cerebellum) using RNA dot blot assays with cholecystokinin (CCK) cDNA and radioimmunoassay, respectively. The CCK-LI levels in all regions examined were very low at birth. Excluding the cerebellum, the levels in these regions increased postnatally and reached adult values at 28 days of age. In contrast to CCK-LI, CCK mRNA levels changed dramatically during development. A considerable amount of CCK mRNA was detected in the frontal cortex and hippocampus at birth. The changes in the level of CCK mRNA in the frontal cortex and colliculi paralleled those of CCK-LI, including a rapid increase from 7 to 14 days of age. The synthesis of CCK mRNA preceded the appearance of CCK-LI. CCK mRNA levels in the hippocampus and striatum exhibited a transient increase, with a peak at 14 days of age. In the adult brain, the CCK mRNA levels were high in the frontal cortex, moderate in the hippocampus and colliculi, and low in the striatum. The cerebellum contained only a negligible amount of CCK mRNA during development. The relatively high level of CCK-LI compared with the low level of CCK mRNA in the striatum supports the idea that most of the striatal CCK-LI is supplied from extrastriatal regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The accumulation of histone H1o has been studied in neuronal and glial nuclei from rat cerebral cortex during postnatal development. In neurons H1o represents ~2% of the H1 content at birth and remains unchanged until day 8. Beyond this point H1o accumulates rapidly until day 18, where it levels off at 16% of H1. The midpoint of the transition is at day 14. In glial cells H1o represents ~2.5% of the H1 at birth. It starts to accumulate between days 18 and 21; its concentration raises rapidly up to day 30 slowing down from then on. At day 300 (the farthest point examined) it represents 21% of H1. These results are discussed in relation to the events of the postnatal development of the cerebral cortex in the rat. It is concluded that Ho probably does not suppress cell proliferation.  相似文献   

18.
Substantial evidence suggest that oxidative damage may play a role in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). We examined levels of 8-Hydroxy-2'-deoxyguanosine (8OH2'dG) in the nuclear DNA from the spinal cord, frontal cortex, striatum and cerebellum from G93A mice at 60, 90, and 120 days of age. We also used in vivo microdialysis to measure free levels of 8OH2'dG and 8-Hydroxyguanine (8OHG) at the same time points in the frontal cortex of G93A mice. Increased 8OH2'dG DNA levels were observed in the spinal cord (at 60, 90 and 120 days), in the cortex (at 90, and 120 days), and in the striatum (at 120 days), as compared to age-matched littermate controls. No significant changes were found in the cerebellum at any of the time points studied. Free levels of 8OH2'dG in the cortex of G93A mice were increased, as compared to control mice, at 90 and 120 days. Free levels of 8OHG were found to be significantly higher at 120 days of age in control mice than in G93A mice. These results provide evidence that in this model of ALS oixidative DNA-damage is increased and base excision-repair may be deficient.  相似文献   

19.
The postnatal ontogeny of norepinephrine content in the cortex and cerebellum was determined in rats exposed prenatally to a chronic low level of carbon monoxide (150 parts per million). In the cerebellum, norepinephrine concentration and total norepinephrine content among carbon monoxide-exposed rats were consistently elevated over that of control rats from the second through the sixth postnatal weeks. In the cortex, norepinephrine concentration and total norepinephrine content among carbon monoxide-exposed rats did not differ from that of control rats over the same period. These results identify the cerebellum as a region whose postnatal development is altered by prenatal exposure to low levels of carbon monoxide-induced hypoxia.  相似文献   

20.
It has been proposed that assembly of the final NMDA receptor complex may be modified by prenatal ethanol exposure, resulting in long-term alterations of NMDA receptor pharmacology. We investigated the effect of prenatal and postnatal ethanol exposure on the developmental profile of mRNAs encoding NMDA receptor subunits in rat hippocampus. Female Sprague-Dawley rats were chronically intoxicated for 4 weeks with a 10% (v/v) ethanol solution administered throughout pregnancy and lactation. Hippocampus and cerebellum were isolated from pups (postnatal days 1-28) of the ethanol-exposed and ad libitum groups. Our results, using a semiquantitative RT-PCR technique, showed a selective effect of ethanol exposure on the various NMDA receptor subunits. Ethanol exposure significantly increased the levels of NR1(1XX), NR1(X11) and NR2(D) mRNAs on postnatal days 7 and 14 and decreased the level of NR2(C) on postnatal day 1. Immunoblot analyses demonstrated that NR2(D) protein levels were increased on postnatal day 7 after ethanol exposure. However, the developmental profile of mRNAs encoding for NR2(A-B), NR3(L/S), GBP and Gly/TCP-BP subunits were not affected. Moreover, no significant effects of ethanol exposure were observed on the developmental transition from expression of NR1(0XX) to NR(1XX) splice variants occurring in the cerebellum on postnatal day 19. Unexpectedly, [(3) H]MK-801 binding experiments showed that ethanol exposure increased the B (max) values of high-affinity sites on postnatal days 14 and 28, with no change of K (d) values. These findings indicate that prenatal and/or postnatal ethanol exposure alters the hippocampal levels of mRNAs encoding for certain subunits and the density of high-affinity [(3) H]MK-801 binding sites. As these subunits have been shown to modulate the functional properties of NMDA receptors, these results suggest that this altered expression could be involved in the neurodevelopmental disorders associated with fetal ethanol exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号