首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction between 6-acetylmethylenepenicillanic acid (compound Ro 15-1903; AMPA) and TEM-1 beta-lactamase was investigated in order to elucidate the mechanism of action of AMPA. Formation of the enzyme-inhibitor complex (EA) was accompanied by a shift of the absorbance maximum from 292 nm to 303 nm and an increase in the absorption. Regeneration of activity was very slow and incomplete, reaching about one-third of the initial activity after 48 h at 37 degrees C. This behaviour indicated a branched pathway of the decay of the inactivated enzyme. Kinetic and isoelectric-focusing experiments proved this assumption. The first-order constant of regeneration of active enzyme was 6 X 10(-6)-10 X 10(-6) s-1, whereas the rate constant leading to inactive enzyme (EA') was 10 X 10(-6)-15 X 10(-6) s-1 at pH 7.0. Both constants became larger at higher pH. Inactive enzyme (EA') consisted of two major species, with pI 5.36 (EA'1) and 5.30 (EA'2). The former increased at the beginning of incubation but decreased after prolonged incubation. From consideration of these results and previous data [Arisawa & Then (1983) Biochem. J. 209, 609-615], a likely mechanism of inactivation of TEM-1 beta-lactamase by AMPA is discussed.  相似文献   

2.
6-Acetylmethylenepenicillanic acid is a new kinetically irreversible inhibitor of various beta-lactamases. Interaction between 6-acetylmethylenepenicillanate and purified TEM-1 beta-lactamase during the inactivation process was investigated. 6-Acetylmethylenepenicillanate inhibited the enzyme in a second-order fashion with a rate constant of 0.61 microM-1 . S-1. The apparent inactivation constant decreased in the presence of increasing concentrations of the substrate benzylpenicillin. Native enzyme (pI 5.4) was converted into two inactive forms with pI 5.25 and 5.15, the latter form being transient and readily converted into the more stable form with pI 5.15. Even a 50-fold excess of inhibitor over enzyme did not produce any other inactivated species of the enzyme. All the results obtained suggest that 6-acetylmethylenepenicillanate is a potent irreversible and active-site-directed inhibitor of TEM-1 beta-lactamase.  相似文献   

3.
The integron-borne bla(VEB-1) gene encodes an extended-spectrum beta-lactamase. This gene was associated mostly with IS1999 and rarely with an additional IS2000 element in Pseudomonas aeruginosa isolates from Thailand, whereas IS1999 was only very rarely associated with bla(VEB-1) in Enterobacteriaceae. Expression experiments and promoter study identified promoter sequences in IS1999 that increased the expression of VEB-1 in P. aeruginosa.  相似文献   

4.
We describe the use of molecular probes to detect the TEM-type beta-lactamase genes. As a general probe, we prepared a 656 base pair restriction fragment, entirely within the TEM structural gene. This probe was specific for the TEM family, hybridizing only with TEM-1 and TEM-2. The TEM-1 and TEM-2 beta-lactamases differ by only one amino acid. We synthesized two oligonucleotides whose central bases correspond to this difference. The use of these oligonucleotides enables us to discriminate between TEM-1 and TEM-2 genes. Using oligonucleotides homologous to parts of Tn3, we also monitored the presence of TnA-like transposons in bacteria harboring different beta-lactamase genes. Only the TEM-1 and TEM-2 genes were found to be on transposons with terminal sequences identical to those of Tn3. All hybridization experiments were performed with both dot-blot and colony-hybridization techniques, and the suitability of these two methods for epidemiological studies is compared.  相似文献   

5.
Extended-spectrum beta-lactamases (ESBLs) produced by a clinical isolate of Shigella flexneri from chickens were detected with confirmatory phenotypic tests of the Clinical and Laboratory Standards Institute, and minimum inhibitory concentrations of several antibacterial drugs against the isolate were determined by the twofold dilution method. The genotype and subtype of the ESBL-producing S. flexneri isolate were identified by PCR amplifying of ESBL genes and DNA sequencing analysis. The results revealed that the isolate was able to produce ESBLs. They were resistant to third-generation cephalosporins such as ceftiofur and ceftriaxone and showed characteristics of multidrug resistance. The ESBL gene from the S. flexneri isolate was of the TEM type. Sequence analysis indicated that the TEM-type gene had 99.1% and 99.2% identity to TEM-1D ESBL and TEM-1 beta-lactamase, respectively, at the nucleotide level. The amino acid sequence inferred from the TEM-type gene revealed three substitutions compared with the TEM-1 and TEM-1D enzymes: Ser51Gly, Val82Ila and Ala182Val. When it was compared with TEM-116 (99.8% identity), there were only two mutations (A(151)G and T(403)C) in the TEM-type gene, resulting in the substitution of Ser to Gly at position 51 in the amino acid sequence. The TEM type was a TEM-116 derivative.  相似文献   

6.
The structure of the 28 kDa beta-lactamase inhibitor protein-II (BLIP-II) in complex with the TEM-1 beta-lactamase has been determined to 2.3 A resolution. BLIP-II is a secreted protein produced by the soil bacterium Streptomyces exfoliatus SMF19 and is able to bind and inhibit TEM-1 with subnanomolar affinity. BLIP-II is a seven-bladed beta-propeller with a unique blade motif consisting of only three antiparallel beta-strands. The overall fold is highly similar to the core structure of the human regulator of chromosome condensation (RCC1). Although BLIP-II does not share the same fold with BLIP, the first beta-lactamase inhibitor protein for which structural data was available, a comparison of the two complexes reveals a number of similarities and provides further insights into key components of the TEM-1-BLIP and TEM-1-BLIP-II interfaces. Our preliminary results from gene knock-out studies and scanning electron microscopy also reveal a critical role of BLIP-II in sporulation.  相似文献   

7.
In vitro selections of stabilized proteins lead to more robust enzymes and, at the same time, yield novel insights into the principles of protein stability. We employed Proside, a method of in vitro selection, to find stabilized variants of TEM-1 β-lactamase from Escherichia coli. Proside links the increased protease resistance of stabilized proteins to the infectivity of a filamentous phage. Several libraries of TEM-1 β-lactamase variants were generated by error-prone PCR, and variants with increased protease resistance were obtained by raising temperature or guanidinium chloride concentration during proteolytic selections. Despite the small size of phage libraries, several strongly stabilizing mutations could be obtained, and a manual combination of the best shifted the profiles for thermal unfolding and temperature-dependent inactivation of β-lactamase by almost 20 °C to a higher temperature. The wild-type protein unfolds in two stages: from the native state via an intermediate of the molten-globule type to the unfolded form. In the course of the selections, the native protein was stabilized by 27 kJ mol− 1 relative to the intermediate and the cooperativity of unfolding was strongly increased. Three of our stabilizing replacements (M182T, A224V, and R275L) had been identified independently in naturally occurring β-lactamase variants with extended substrate spectrum. In these variants, they acted as global suppressors of destabilizations caused by the mutations in the active site. The comparison between the crystal structure of our best variant and the crystal structure of the wild-type protein indicates that most of the selected mutations optimize helices and their packing. The stabilization by the E147G substitution is remarkable. It removes steric strain that originates from an overly tight packing of two helices in the wild-type protein. Such unfavorable van der Waals repulsions are not easily identified in crystal structures or by computational approaches, but they strongly reduce the conformational stability of a protein.  相似文献   

8.
Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants.  相似文献   

9.
The hydrolysis of beta-lactam antibiotics by class A beta-lactamases is a common cause of bacterial resistance to these agents. The beta-lactamase inhibitory protein (BLIP) is able to bind and inhibit several class A beta-lactamases, including TEM-1 beta-lactamase and SME-1 beta-lactamase. Although the TEM-1 and SME-1 enzymes share 33% amino acid sequence identity and a similar fold, they differ substantially in surface electrostatic properties and the conformation of a loop-helix region that BLIP binds. Alanine-scanning mutagenesis was performed to identify the residues on BLIP that contribute to its binding affinity for each of these enzymes. The results indicate that the sequence requirements for binding are similar for both enzymes with most of the binding free energy provided by two patches of aromatic residues on the surface of BLIP. Polar residues such as several serines in the interface do not make significant contributions to affinity for either enzyme. In addition, the specificity of binding is significantly altered by mutation of two charged residues, Glu73 and Lys74, that are buried in the structure of the TEM-1.BLIP complex as well as by residues located on two loops that insert into the active site pocket. Based on the results, a E73A/Y50A double mutant was constructed that exhibited a 220,000-fold change in binding specificity for the TEM-1 versus SME-1 enzymes.  相似文献   

10.
Summary The genetic environment of plasmid-borne bla TEM mutant genes, encoding nine distinct TEM-type extended-spectrum -lactamases, was studied in transconjugants from clinical isolates of enterobacteria. Colony hybridization with probes specific for tnpA and tnpR of Tn3, tnpA and tnpI of Tn21, aacA4, and IS15, and restriction endonuclease analysis of plasmid DNA indicated that the structural genes for the enzymes were always associated with intact or deleted variants of the Tn3 family. Four of the nine bla TEM variants, which account for 62% of 222 isolates in a molecular epidemiological study, were associated with replicons indistinguishable from the epidemic Inc7-M plasmid pCFF04 that carries the blaTEM-3 gene. This suggests that mutant genes were selected from the same prototype plasmid carrying penicillinase genes bla TEM-1 or –2. A 6.6 kb DNA fragment of pCFF04 containing bla TEM-3 was characterized by amplification mapping and sequencing. The results obtained indicated that bla TEM-3 was present on a copy of Tn1 interrupted at the start codon of the transposase by a DNA sequence reminiscent of the inverted repeats of class II transposons. This partial Tn1 copy was, in turn, inserted into the transposase gene of a Tn21-like transposon containing an integron expressing an aacA4 gene. The presence of an integron can account for the various assortments of aminoglycoside resistance genes found associated with bla TEM-3.  相似文献   

11.
12.
The insertion element IS1 is a natural constituent of coliphage P1 DNA.   总被引:7,自引:0,他引:7  
S Iida  J Meyer  W Arber 《Plasmid》1978,1(3):357-365
The presence of one copy of the insertion element IS1 in P1 DNA at map unit 20 of the physical genome map is revealed by restriction enzyme cleavage patterns and electron microscopy. This IS1 element is cleaved once by the restriction endonuclease PstI and extends about 500 to 600 base pairs to the left and 200 to 300 base pairs to the right of the unique PstI cleavage site of P1 DNA. Two P1Cm derivatives, P1Cm246 and P1Cm89, carrying a chloramphenicol resistance determinant contain DNA insertions with two terminal directly repeated IS1 elements. Insertion of such IS1-mediated transposition elements may occur at the IS1 site in the P1 genome or at other sites. The significance of IS1 as a natural constitutent of P1 DNA is discussed.  相似文献   

13.
TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Recently, TEM beta-lactamase variants with amino acid substitutions in the active-site pocket of the enzyme have been identified in natural isolates with increased resistance to extended-spectrum cephalosporins. To identify other amino acid substitutions that alter the activity of TEM-1 towards extended-spectrum cephalosporins, we probed regions around the active-site pocket by random-replacement mutagenesis. This mutagenesis technique involves randomizing the DNA sequence of three to six codons in the blaTEM-1 gene to form a library containing all or nearly all of the possible substitutions for the region randomized. In total, 20 different residue positions that had been randomized were screened for amino acid substitutions that increased enzyme activity towards the extended-spectrum cephalosporin cefotaxime. Substitutions at positions 104, 168, and 238 in the TEM-1 beta-lactamase that resulted in increased enzyme activity towards extended-spectrum cephalosporins were found. In addition, small deletions in the loop containing residues 166 to 170 drastically altered the substrate specificity of the enzyme by increasing activity towards extended-spectrum cephalosporins while virtually eliminating activity towards ampicillin.  相似文献   

14.
The SHV-5 extended-spectrum beta-lactamase gene of pACM1 was previously shown to reside on a segment of DNA ( approximately 7.9 kb) homologous to part of the Klebsiella pneumoniae chromosome. Regions of pACM1 overlapping the ends of the homology were sequenced. A defective copy of IS26 was found on each side of, and immediately adjacent to, the homology. The copies were oriented as direct repeats reminiscent of the compound transposon Tn2680. Other mobile elements and a putative mutagenesis gene, several of which were also defective, were also located in the vicinity of the homology. An intact precursor to the transposon remnant might have contributed to the dissemination of the SHV-5 gene.  相似文献   

15.
An expression system has been developed that allows high levels of production of TEM-1 beta-lactamase with ease of biosynthetic incorporation of nuclear isotopes. The gene for mature TEM-1 beta-lactamase fused to the leader sequence of the ompA protein was subcloned into the pET-24a(+) vector by introduction of an NdeI restriction site at the first codon of the fused genes and transformed into Escherichia coli BL21 (DE3) cells. With protein induction at 25 degrees C supported by LB medium supplemented with osmolytes (300 mM sucrose and 2.5 mM betaine), the extracellular, mature form of wild-type TEM-1 beta-lactamase was recovered at a level of 140 mg/L. The production level of E166N, E240C, E104C, and M272C mutants depended on the mutation but was invariably higher than reported by others for expression systems of the wild-type enzyme. Comparison of different carbon sources on the efficiency of biosynthetic incorporation of covalent deuterium showed maximal (90%) incorporation with minimal medium containing 99% (2)H(2)O and sodium d(3)-acetate (99 atom% (2)H). The yield of deuterium-enriched wild-type enzyme was 80 mg/L with yields for mutants proportionally reduced. The high level of protein deuteration achieved with this system allowed detection of the hyperfine coupling between the paramagnetic nitroxyl group of a spin-labeled penicillin substrate and hydrogens on the penicillin moiety in a cryokinetically isolated acylenzyme reaction intermediate because of the decrease in overlapping resonances of active site residues. The overexpression system is readily adaptable for other target proteins and facilitates studies requiring large quantities of protein in isotopically enriched forms.  相似文献   

16.
17.
The numbers of chromosomal copies of the insertion sequence IS1 in strains of Salmonella typhimurium (0 to 8 copies), Shigella sonnei (56 copies), and Shigella flexneri (41 copies) isolated in Mexico City, Mexico, were similar to those reported for these genera isolated in other countries. Of the 11 Shigella strains studied, all carried several small plasmids; however, in only one of these strains did a small plasmid contain IS1, IS1 recombination, cointegrate formation mediated by IS1 or by the IS1-flanked transposon Tn9, and transposition of Tn9 occurred at a higher frequency in S. typhimurium than in either Escherichia coli or S. sonnei strains. The frequencies of IS1 recombination in S. typhimurium strains containing either zero or eight copies of IS1 were similar.  相似文献   

18.
An expression vector for high-level protein synthesis in Vero cells   总被引:2,自引:0,他引:2  
We have constructed two new multi-purpose cloning vectors, pNI1 and pNI2, that carry the Escherichia coli gene Ecogpt encoding the enzyme xanthine-guanine phosphoribosyl transferase as a dominant selective marker. The Ecogpt gene is under the control of either the long-terminal-repeat promoter of mouse mammary tumor virus, pNI1, or the simian virus 40 early promoter, pNI2. Another feature of the vectors is a polylinker preceded by the human metallothionein IIA promoter. We have used pNI2 for the synthesis of the hepatitis B surface antigen (HBsAg) at a high level in monkey Vero cells. We show that gene amplification and a concomitant stable increase of HBsAg synthesis can be achieved in these cells using modified selective medium containing hypoxanthine, aminopterin and thymidine, i.e., increasing the aminopterin and decreasing the hypoxanthine concentrations.  相似文献   

19.
We have determined the thermodynamics of binding for the interaction between TEM-1 beta-lactamase and a set of alanine substituted contact residue mutants ofbeta-lactamase-inhibitory protein (BLIP) using isothermal titration calorimetry. The binding enthalpies for these interactions are highly temperature dependent, with negative binding heat capacity changes ranging from -800 to -271 cal mol(-1) K(-1). The isoenthalpic temperatures (at which the binding enthalpy is zero) of these interactions range from 5 to 38 degrees C. The changes in isoenthalpic temperature were used as an indicator of the changes in enthalpy and entropy driving forces, which in turn are related to hydrophobic and hydrophilic interactions. A contact residue of BLIP is categorized as a canonical residue if its alanine substitution mutant exhibits a change of isoenthalpic temperature matching the change of hydrophobicity because of the mutation. A contact position exhibiting a change in isoenthalpic temperature that does not match the change in hydrophobicity is categorized as an anti-canonical residue. Our experimental results reveal that the majority of residues where alanine substitution results in a loss of affinity are canonical (7 of 10), and about half of the residues where alanine substitutions have a minor effect are canonical. The interactions between TEM-1beta-lactamase and BLIP canonical contact residues contribute directly to binding free energy, suggesting potential anchoring sites for binding partners. The anti-canonical behavior of certain residues may be the result of mutation-induced modifications such as structural rearrangements affecting contact residue configurations. Structural inspection of BLIP suggests that the Lys(74) side chain electrostatically holds BLIP loop 2 in position to bind to TEM-1 beta-lactamase, explaining a large loss of entropy-driven binding energy of the K74A mutant and the resulting anti-canonical behavior. The anti-canonical behavior of the W150A mutant may also be due to structural rearrangements. Finally, the affinity enhancing effect of the contact residue mutant Y50A may be due to energetic coupling interactions between Asp(49) and His(41).  相似文献   

20.
The presence of insertion sequence IS1 in 70 multiple-antibiotic resistant clinical strains was determined. This 70-strain collection comprised 46 Escherichia coli, 18 Salmonella and 6 Shigella strains. The presence of IS1 was detected in the chromosome and plasmids of 73% and 63% of the strains, respectively, and 51% of the strains carried IS1 in both. The frequency of IS1 was higher in Salmonella than in E. coli and Shigella strains. A total of 31 strains carried large plasmids with IS1; 10 of these strains (32.3%) were able to transfer all or some of the antibiotic resistance markers to E. coli K12 or S. typhimurium recipient strains. Resistance markers of all clinical strains were maintained stably after several generations of growth. The presence of IS1 in a relatively high percentage of plasmids of multiple-antibiotic resistant clinical isolates, suggests a role for this sequence in the dissemination of genes which code for antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号