首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Infant formulas supplemented with docosahexaenoic acid (DHA) and arachidonic acid (ARA) are now available in the United States; however, little is known about the factors that affect biosynthesis. Baboon neonates were assigned to one of four treatments: term, breast-fed; term, formula-fed; preterm (155 of 182 days gestation), formula-fed; and preterm, formula+DHA/ARA-fed. Standard formula had no DHA/ARA; supplemented formula had 0.61%wt DHA (0.3% of calories) and 1.21%wt ARA (0.6% of calories), and baboon breast milk contained 0.68 +/- 0.22%wt DHA and 0.62 +/- 0.12%wt ARA. At 14 days adjusted age, neonates received a combined oral dose of [U-13C]alpha-linolenic acid (LNA*) and [U-13C]linoleic acid (LA*), and tissues were analyzed 14 days after dose. Brain accretion of linolenic acid-derived DHA was approximately 3-fold greater for the formula groups than for the breast-fed group, and dietary DHA partially attenuated excess DHA synthesis among preterms. A similar, significant pattern was found in other organs. Brain linoleic acid-derived ARA accretion was significantly greater in the unsupplemented term group but not in the preterm groups compared with the breast-fed group. These data show that formula potentiates the biosynthesis/accretion of DHA/ARA in term and preterm neonates compared with breast-fed neonates and that the inclusion of DHA/ARA in preterm formula partially restores DHA/ARA biosynthesis to lower, breast-fed levels. Current formula DHA concentrations are inadequate to normalize long-chain polyunsaturated fatty acids synthesis to that of breast-fed levels.  相似文献   

4.
5.
Previously, we demonstrated that ablation of alpha-synuclein (Snca) reduces arachidonate (20:4n-6) turnover in brain phospholipids through modulation of an endoplasmic reticulum-localized acyl-CoA synthetase (Acsl). The effect of Snca ablation on docosahexaenoic acid (22:6n-3) metabolism is unknown. In the present study, we examined the effect of Snca gene ablation on brain 22:6n-3 metabolism. We determined 22:6n-3 uptake and incorporation into brain phospholipids by infusing awake, wild-type and Snca-/- mice with [1-14C]22:6n-3 using steady-state kinetic modeling. In addition, because Snca modulates 20:4n-6-CoA formation, we assessed microsomal Acsl activity using 22:6n-3 as a substrate. Although Snca gene ablation does not affect brain 22:6n-3 uptake, brain 22:6n-3-CoA mass was elevated 1.5-fold in the absence of Snca. This is consistent with the 1.6- to 2.2-fold increase in the incorporation rate and turnover in ethanolamine glycerophospholipid, phosphatidylserine, and phosphatidylinositol pools. Increased 22:6n-3-CoA mass was not the result of altered Acsl activity, which was unaffected by the absence of Snca. While Snca bound 22:6n-3, Kd = 1.0 +/- 0.5 micromol/L, it did not bind 22:6n-3-CoA. These effects of Snca gene deletion on 22:6n-3 brain metabolism are opposite to what we reported previously for brain 20:4n-6 metabolism and are likely compensatory for the decreased 20:4n-6 metabolism in brains of Snca-/- mice.  相似文献   

6.
Lipid peroxidation of human heptoma cell line, HepG2, after incorporation of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was measured with a fluorescent probe and gas chromatography-mass spectrometry (GC-MS) analysis. The analysis with a fluorescent probe showed that incorporation of each polyunsaturated fatty acid (PUFA) enhanced the cellular lipid peroxidation level, but there was little difference in the effect of LA, AA, or DHA on the enhancement of cellular lipid peroxidation. The fluorescent analysis also showed that the addition of H(2)O(2) (0.5 mM) enhanced the cellular lipid peroxidation levels in LA and AA supplemented cells as compared with those without H(2)O(2). However, the enhancement of lipid peroxidation by H(2)O(2) was not observed in DHA-supplemented cells. The same result was obtained in the GC-MS analysis of total amounts of monohydroperoxides (MHP) formed in the cellular phospholipid oxidation. In this case, the main source for MHP was LA in LA-, AA-, and DHA-supplemented cells. A significant amount of AA-MHP and a small amount of DHA-MHP were observed in AA- and DHA-supplemented cells respectively. GC-MS analysis also indicated the specific positional distribution of DHA-MHP isomers. The isomers were formed only by hydrogen abstraction at the C-18 (16-MHP + 20-MHP; 46.5%), C-6 (4-MHP + 8-MHP; 38.5%), and C-12 (10-MHP + 14-MHP; 15.1%) positions, but not at the C-9 or C-15 positions.  相似文献   

7.
8.
We report a retrospective study on serum and cerebrospinal fluid (CSF) alpha-fetoprotein (AFP) and beta-human chorionic gonadotropin (betahCG) determination in a series of 30 patients bearing intracranial germ cell tumors. At diagnosis five patients had high serum and CSF AFP levels. No patient had positive serum AFP and negative CSF AFP or vice versa. Twelve of 30 patients had serum betahCG levels above 5 mlU/mL, eight had high betahCG only in CSF, and ten were completely negative. During treatment and follow-up both markers were accurate indicators of the response to therapy, decreasing rapidly and often becoming normal already after the first phase of treatment. We conclude that these two markers, and mostly betahCG, may be useful in the diagnosis and monitoring of the response to therapy of patients with intracranial germ cell tumors.  相似文献   

9.
In concentrations from 2.5 x 10(3) to 480 x 10(3) ng/ml AFP is able to increase the phagocytic index and the phagocytizing percentage of human blood platelets in vitro conditions. This effect is dependent on the dose of AFP and time of incubation.  相似文献   

10.
11.
Strains of low-passage, fetal diploid, baboon (Papio cynocephalus) fibroblasts were susceptible to exogenous infection with three independent isolates of baboon endogenous virus, as measured by an immunofluorescence assay specific for viral p28. Infectivity of the M7 strain of baboon endogenous virus for baboon cells of fetal skin muscle origin was equivalent to that for human and dog cells in that similar, linear, single-hit titration patterns were obtained. The assay for supernatant RNA-dependent DNA polymerase, however, showed that baboon cells produced only low levels of virus after infection compared with the production by heterologous cells. The results showed that baboon endogenous virus was capable of penetrating baboon cells and that viral genes were expressed in infected cells. Replication of complete infectious virus was restricted, however, indicating that in this primate system homologous cells differentially regulated the expression of viral genes.  相似文献   

12.
The preservation of a constant pool of free cholesterol (FC) is critical to ensure several functions of cardiomyocytes. We investigated the impact of the membrane incorporation of arachidonic acid (C20:4 ω6, AA) or docosahexaenoic acid (C22:6 ω3, DHA) as ω6 or ω3 polyunsaturated fatty acids (PUFAs) on cholesterol homeostasis in primary cultures of neonatal rat cardiac myocytes. We measured significant alterations to the phospholipid FA profiles, which had markedly different ω6/ω3 ratios between the AA and DHA cells (13 vs. 1). The AA cells showed a 2.7-fold lower cholesterol biosynthesis than the DHA cells. Overall, the AA cells showed 2-fold lower FC masses and 2-fold higher cholesteryl ester masses than the DHA cells. The AA cells had a lower FC to phospholipid ratio and higher triglyceride levels than the DHA cells. Moreover, the AA cells showed a 40% decrease in ATP binding cassette transporter A1 (ABCA1)-mediated and a 19% decrease in ABCG1-mediated cholesterol efflux than the DHA cells. The differences in cholesterol efflux pathways induced by AA or DHA incorporation were not caused by variations in ABCs transporter expression and were reduced when ABC transporters were overexpressed by exposure to LXR/RXR agonists. These results show that AA incorporation into cardiomyocyte membranes decreased the FC turnover by markedly decreasing the endogenous cholesterol synthesis and by decreasing the ABCA1- and ABCG1-cholesterol efflux pathways, whereas DHA had the opposite effects. We propose that these observations may partially contribute to the beneficial effects on the heart of a diet containing a high ω3/ω6 PUFA ratio.  相似文献   

13.
14.
DNaseI sensitivity of the rat albumin and alpha-fetoprotein genes.   总被引:3,自引:1,他引:3       下载免费PDF全文
We have analyzed the DNaseI sensitivity of chromatin from the rat albumin and alpha-fetoprotein genes in the fetal liver (which synthesizes albumin and alpha-fetoprotein), adult liver (which synthesizes albumin), fetal yolk sac (which synthesizes alpha-fetoprotein), and adult kidney (which synthesizes neither). Active genes were much more sensitive than their kidney counterparts, and the adult liver alpha-fetoprotein and fetal yolk sac albumin genes showed intermediate levels of sensitivity. Sensitivity was analyzed as a function of the extent of DNaseI digestion. Rate constants were calculated for the degradation of individual DNA hybridization bands and normalized to the intrinsic rate constants of the same bands degraded in purified DNA. This enabled us to eliminate the inconsistencies that otherwise result from comparing chromatin sensitivity of different DNA sequences, or chromatin sensitivity in different nuclear environments.  相似文献   

15.
Human alpha-fetoprotein (AFP) was expressed in Saccharomyces cerevisiae, with a plasmid containing the cDNA sequence for human AFP fused with the rat AFP signal peptide. The recombinant AFP was purified from the yeast lysate by DEAE-cellulose and immunoaffinity chromatography. The amino acid composition and the molecular weight of the recombinant AFP were similar to those of hepatoma AFP. N-terminal amino acids sequence analysis indicated that the signal peptide had been processed. The recombinant and hepatoma AFP reacted identically in Ouchterlony immunodiffusion and radioimmunoassay tests. These observations indicated that the yeast recombinant protein had the properties of native AFP.  相似文献   

16.
Studies from our laboratory have suggested a role for ferrous iron in the metabolism of arachidonic acid and demonstrated that inhibitors of prostaglandin synthesis exert their effect by complexing with the heme group of cyclooxygenase. Docosahexaenoic acid (DHA) is a potent competitive inhibitor of arachidonic acid metabolism by sheep vesicular gland prostaglandin synthetase. In this study we have evaluated the effect of exogenously added DHA on platelet function and arachidonic acid metabolism. DHA at 150 microM concentration inhibited aggregation of platelets to 450 microM arachidonic acid. At this concentration DHA also inhibited the second wave of the platelet response to the action of agonists such as epinephrine, adenosine diphosphate and thrombin. Inhibition induced by this fatty acid could be overcome by the agonists at higher concentrations. DHA inhibited the conversion of labeled arachidonic acid to thromboxane by intact, washed platelet suspensions. However, platelets in plasma incubated first with DHA then washed and stirred with labeled arachidonate generated as much thromboxane as control platelets. These results suggest that the polyenoic acids, if released in sufficient quantities in the vicinity of cyclooxygenase, could effectively compete for the heme site and inhibit the conversion of arachidonic acid.  相似文献   

17.
18.
Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from ‘biomagnification’ into ‘bioattenuation’ occurs at 6 g% mRBC-DHA. At 6 g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4 g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5 g%. Postpartum maternal DHA-equilibrium is reached at 8 g% mRBC-DHA, corresponding with 1 g% DHA in mature milk and 7 g% iRBC-DHA at delivery that increases to 8 g% during lactation. This 8 g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle.  相似文献   

19.
Human serum inter-alpha-trypsin-inhibitor (ITI) has so far been assumed to be comprised of a single polypeptide chain which can undergo fragmentation, whereby inhibitory ITI derivatives are released into the blood stream. In contrast, the analysis of the baboon liver mRNA translation products showed that ITI is made up of heavy and light chain(s). The latter may be excreted independently and very likely corresponds to the so-called ITI derivatives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号