首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple sphingolipids such as ceramide, sphingosine and sphingosine 1-phosphate are key regulators of diverse cellular functions. Their roles in the nervous system are supported by extensive evidence derived primarily from studies in cultured cells. More recently animal studies and studies with human samples have revealed the importance of ceramide and its metabolites in the development and progression of neurodegenerative disorders. The roles of sphingolipids in neurons and glial cells are complex, cell dependent, and many times contradictory. In this review I will summarize the effects elicited by ceramide and ceramide metabolites in cells of the nervous system, in particular those effects related to cell survival and death, emphasizing the molecular mechanisms involved. I also discuss recent evidence for the implication of sphingolipids in the development and progression of certain dementias.  相似文献   

2.
3.
There is increased interest in physiological functions and mechanisms of action of sphingolipids metabolites, ceramide, sphingosine, and sphingosine-l-phosphate (SPP), members of a new class of lipid second messengers. This review summarizes current knowledge regarding the role of these sphingolipids metabolites in the actions of growth factors and focuses on the second messenger roles of sphingosine and its metabolite, SPP, in the regulation of cell growth. We also discuss possible interactions with intermediates of the well known glycerophospholipid cycle. Sphingosine and SPP generally provide positive mitogenic signals whereas ceramide has been reported to induce apoptosis and cell arrest in several mammalian cell lines. Stimulation of phospholipase D leading to an increase in phosphatidic acid, a positive regulator of cell growth, by sphingosine and SPP, and its inhibition by ceramide, might be related to their opposite effects on cell growth. This also indicates that sphingolipid turnover could regulate the diacylglycerol cycle. Cross-talk between sphingolipid turnover pathways and the diacylglycerol cycle increases complexity of signaling pathways leading to cellular proliferation and adds additional sites of regulation.  相似文献   

4.
鞘脂与细胞凋亡   总被引:2,自引:0,他引:2  
Wang J  Hu XS  Shi JP 《生理科学进展》2003,34(3):217-221
随着生物技术的不断发展,近年来对鞘脂类物质的研究不断深入。鞘脂质除了在细胞骨架的迁移、血管发生、胚胎发育和信号转导等方面起重要作用外,最近的研究发现鞘脂及其代谢物(神经酰胺、鞘氨醇、鞘氨醇-1-磷酸)能诱导多种肿瘤和恶性增殖细胞(如腺癌、结肠癌、肝肿瘤、肺癌、鼻咽癌等)的凋亡。本文着重对鞘脂与细胞凋亡相关的最新研究进展进行综述。  相似文献   

5.
Inflammation is a network of complex processes involving a variety of metabolic and signaling pathways aiming at healing and repairing damage tissue, or fighting infection. However, inflammation can be detrimental when it becomes out of control. Inflammatory mediators involve cytokines, bioactive lipids and lipid-derived metabolites. In particular, the simple sphingolipids ceramides, sphingosine 1-phosphate, and ceramide 1-phosphate have been widely implicated in inflammation. However, although ceramide 1-phosphate was first described as pro-inflammatory, recent studies show that it has anti-inflammatory properties when produced in specific cell types or tissues. The biological functions of ceramides and sphingosine 1-phosphate have been extensively studied. These sphingolipids have opposing effects with ceramides being potent inducers of cell cycle arrest and apoptosis, and sphingosine 1-phosphate promoting cell growth and survival. However, the biological actions of ceramide 1-phosphate have only been partially described. Ceramide 1-phosphate is mitogenic and anti-apoptotic, and more recently, it has been demonstrated to be key regulator of cell migration. Both sphingosine 1-phosphate and ceramide 1-phosphate are also implicated in tumor growth and dissemination. The present review highlights new aspects on the control of inflammation and cell migration by simple sphingolipids, with special emphasis to the role played by ceramide 1-phosphate in controlling these actions.  相似文献   

6.
Complex sphingolipids are abundant as eukaryotic cell membrane components, whereas their metabolites, in particular ceramide, sphingosine, and sphingosine 1-phosphate, are involved in diverse cell signaling processes. In mammals, degradation of ceramide by ceramidase yields sphingosine, which is phosphorylated by the action of sphingosine kinase to generate sphingosine 1-phosphate. Therefore, ceramidases are key enzymes in the regulation of the cellular levels of ceramide, sphingosine, and sphingosine 1-phosphate. To explore the physiological functions of a neutral ceramidase with diverse cellular locations, we disrupted the Asah2 gene in mice. Asah2 null mice have a normal life span and do not show obvious abnormalities or major alterations in total ceramide levels in tissues. The Asah2-encoded neutral ceramidase is highly expressed in the small intestine along the brush border, suggesting that the neutral ceramidase may be involved in a pathway for the digestion of dietary sphingolipids. Indeed, Asah2 null mice were deficient in the intestinal degradation of ceramide. Thus, the results indicate that the Asah2-encoded neutral ceramidase is a key enzyme for the catabolism of dietary sphingolipids and regulates the levels of bioactive sphingolipid metabolites in the intestinal tract.  相似文献   

7.
Simple sphingolipids such as ceramide and sphingomyelin (SM) as well as more complex glycosphingolipids play very important roles in cell function under physiological conditions and during disease development and progression. Sphingolipids are particularly abundant in the nervous system. Due to their amphiphilic nature they localize to cellular membranes and many of their roles in health and disease result from membrane reorganization and from lipid interaction with proteins within cellular membranes. In this review we discuss some of the functions of sphingolipids in processes that entail cellular membranes and their role in neurodegenerative diseases, with an emphasis on SM, ceramide and gangliosides.  相似文献   

8.
Sphingolipids are amphiphatic molecules ubiquitously expressed in all eukaryotic cell membranes. Initially characterized as structural components of cell membranes, sphingolipids have emerged as sources of important signalling molecules over the past decade. Sphingolipid metabolites, such as ceramide and S1P (sphingosine 1-phosphate), have been demonstrated to have roles as potent bioactive messengers involved in cell differentiation, proliferation, apoptosis, migration and angiogenesis. The importance of SphK (sphingosine kinase) and S1P in inflammation has been demonstrated extensively. The prevalence of asthma is increasing in many developed nations. Consequently, there is an urgent need for the development of new agents for the treatment of asthma, especially for patients who respond poorly to conventional therapy. Recent studies have demonstrated the important role of SphK and S1P in the development of asthma by regulating pro-inflammatory responses. These novel pathways represent exciting potential therapeutic targets in the treatment of asthma and are described in the present review.  相似文献   

9.
10.
Sphingolipid-mediated Signalling in Plants   总被引:3,自引:2,他引:1  
A plethora of biological effects, ranging from cellular survivalto apoptosis, has been assigned to sphingolipids and, in particular,to the sphingolipid metabolites ceramide, sphingosine and sphingosine-1-phosphate.One aspect of sphingolipid biology that is currently attractinga great deal of interest in animals and yeast is their rolein cell signalling. In contrast, much less is known about sphingolipidsin plants, although available information suggests that thesecompounds may also fulfil important signalling roles. Thereare suggestions that sphingolipid metabolites may be involvedin diverse processes including pathogenesis, membrane stabilityand the response to drought. Here, we review current informationon the role of sphingolipid metabolites and highlight theiremerging roles in plant signalling. Copyright 2001 Annals ofBotany Company Sphingolipid, cerebrosides, glucosylceramides, sphingosine-1-phosphate, pathogenesis, stomata, guard cells, calcium, signal transduction, cell signalling  相似文献   

11.
The plant flavonoid luteolin exhibits different biological effects, including anticancer properties. Little is known on the molecular mechanisms underlying its actions in colorectal cancer (CRC). Here we investigated the effects of luteolin on colon cancer cells, focusing on the balance between ceramide and sphingosine-1-phosphate (S1P), two sphingoid mediators with opposite roles on cell fate. Using cultured cells, we found that physiological concentrations of luteolin induce the elevation of ceramide, followed by apoptotic death of colon cancer cells, but not of differentiated enterocytes. Pulse studies revealed that luteolin inhibits ceramide anabolism to complex sphingolipids. Further experiments led us to demonstrate that luteolin induces an alteration of the endoplasmic reticulum (ER)-Golgi flow of ceramide, pivotal to its metabolic processing to complex sphingolipids. We report that luteolin exerts its action by inhibiting both Akt activation, and sphingosine kinase (SphK) 2, with the consequent reduction of S1P, an Akt stimulator. S1P administration protected colon cancer cells from luteolin-induced apoptosis, most likely by an intracellular, receptor-independent mechanism. Overall this study reveals for the first time that the dietary flavonoid luteolin exerts toxic effects on colon cancer cells by inhibiting both S1P biosynthesis and ceramide traffic, suggesting its dietary introduction/supplementation as a potential strategy to improve existing treatments in CRC.  相似文献   

12.
Abstract: Ceramide generated from sphingomyelin has emerged as a new but conserved type of biologically active lipid. We previously found that endogenous sphingolipids are required for the normal growth of cultured cerebellar Purkinje neurons and that sphingomyelin is present abundantly in the somatodendritic region of these cells. To gain further insight into a potential role of the sphingomyelin/ceramide pathway, we investigated the effects of depletion of sphingolipids on the phenotypic growth and survival of immature Purkinje cells and the ability of ceramide or other sphingolipids to antagonize these effects. Inhibition of ceramide synthesis by ISP-1, a specific inhibitor of serine palmitoyltransferase, decreased cellular levels of sphingolipids. This treatment resulted in a decrease in cell survival accompanied by an induction of apoptotic cell death and aberrant dendritic differentiation of Purkinje cells with no detectable changes in other cerebellar neurons. Cell-permeable ceramides, sphingosine, or sphingomyelin overcame these abnormalities more effectively than other sphingolipids when added simultaneously with ISP-1. Exposure to bacterial sphingomyelinase in turn enhanced cell survival and dendritic branching complexity of Purkinje cells at different optimal concentrations. Furthermore, cell-permeable ceramide acted synergistically with the neurotrophin family, which has been previously shown to support Purkinje cell survival. These observations suggest that ceramide is a requisite for the survival and the dendritic differentiation of Purkinje cells.  相似文献   

13.
Recent studies have identified a potential role for glucosylceramide (GlcCer) in growth promotion and hormonal signalling. In an effort to demonstrate a growth-promoting activity of GlcCer, we prepared a GlcCer having a short-chain acid (octanoyl), in the belief that this glycolipid could be absorbed more readily and more uniformly by cultured cells. By using a mixture of two specific lecithins, dioleoylglycerophosphocholine and 1-stearoyl-2-palmitoylglycerophosphocholine, we were able to prepare dispersions containing a high molar proportion of the GlcCer and the related ceramide, octanoyl sphingosine. Unexpectedly, both sphingolipids inhibited protein and DNA synthesis in Madin-Darby canine kidney cells and produced large increases in the levels of the natural lipids, GlcCer, ceramide, free sphingosine, and an amine that may be glucosylsphingosine (GlcSph). Decreases were seen in the level of sphingomyelin and the proportion of protein kinase C in the cell membranes. The level of lactosylceramide was diminished by octanoyl GlcCer but elevated considerably by octanoyl sphingosine. Diacylglycerols were increased by the lecithins in the liposomes, but the exogenous sphingolipids had no effect. Octanoyl sphingosine labeled in the sphingoid base yielded labeled GlcCer and sphingomyelin labeled in both long-chain and very-long-chain fatty acid families, as well as the octanoyl version. The two families of ceramides, however, had relatively little radioactivity. Some of these changes are attributed to rapid hydrolysis of the added lipids with the formation, particularly from the ceramide, of sphingosine and its anabolic metabolite, GlcSph. Several observations support the idea that the octanoyl sphingosine inhibited the phosphocholinetransferase that synthesizes sphingomyelin while the octanoyl GlcCer inhibited GlcCer beta-glucosidase and GlcCer galactosyltransferase. The use of unnatural short-chain lipids in the study of cell growth and other phenomena may result in unexpected changes in related metabolites and the findings from such experiments should therefore be interpreted cautiously.  相似文献   

14.
Various sphingolipids are being viewed as bioactive molecules and/or second messengers. Among them, ceramide (or N-acylsphingosine) and sphingosine generally behave as pro-apoptotic mediators. Indeed, ceramide mediates the death signal initiated by numerous stress agents which either stimulate its de novo synthesis or activate sphingomyelinases that release ceramide from sphingomyelin. For instance, the early generation of ceramide promoted by TNF is mediated by a neutral sphingomyelinase the activity of which is regulated by the FAN adaptor protein, thereby controlling caspase activation and the cell death programme. In addition, the activity of this neutral sphingomyelinase is negatively modulated by caveolin, a major constituent of some membrane microdomains. The enzyme sphingosine kinase also plays a crucial role in apoptosis signalling by regulating the intracellular levels of two sphingolipids having opposite effects, namely the pro-apoptotic sphingosine and the anti-apoptotic sphingosine 1-phosphate molecule. Ceramide and sphingosine metabolism therefore appears as a pivotal regulatory pathway in the determination of cell fate.  相似文献   

15.
Sphingolipids participate in membrane structure and signaling in neuronal cells, and an emerging strategy for control of gliomas is to inhibit growth and/or induce apoptosis using ceramide and ceramide analogs. Nonetheless, some sphingolipids (ceramides and sphingosine) induce and others (sphingosine 1-phosphate) inhibit apoptosis; therefore, when testing putative anti-cancer agents, it is critical to obtain precise knowledge of the types and quantities of not only the test compounds, but also their effects on endogenous species. Combination of liquid chromatography and tandem mass spectrometry affords a "metabolomic" profile of all of the intermediates of ceramide biosynthesis (3-ketosphinganine, sphinganine and dihydroceramides) and the direct products of ceramide metabolism (sphingomyelins and monohexosylceramides as well as sphingosine and sphingosine 1-phosphate). This method has been applied to four human glioma cell lines (LN18, LN229, LN319 and T98G), and differences in the amounts and types of sphingolipids were found. For example, LN229 and LN319 have approximately twice the sphingosine 1-phosphate of LN18 and T98G; LN229 and LN319 have more monohexosylceramides than lactosylceramides, whereas the opposite is the case for LN18 and T98G; and the fatty acyl chain distributions of the sphingolipids differ among the cell lines. The ability to obtain this type of "metabolomic" profile allows studies of how anti-cancer agents (especially sphingolipids and sphingolipid analogs) affect the amounts of these bioactive species, and may lead to a better understanding of the abnormal phenotypes of gliomas.  相似文献   

16.
Keratinocytes contain abundant ceramides compared to other cells. However, studies on these cells have mainly focused on the barrier function of ceramide, while their other roles, such as those in apoptosis or cell cycle arrest, have not been well addressed. In this study, we investigated the apoptosis-inducing effect of exogenously added cell-permeable ceramides in HaCaT keratinocytes. We found that N-hexanoyl sphingosine (C6-ceramide) induced apoptosis efficiently through the accumulation of long chain ceramides. On the other hand, N-acetyl sphingosine (C2-ceramide) induced neither apoptosis nor accumulation of long chain ceramides. We also found that exogenously added C6-ceramide was hydrolyzed to sphingosine and then reacylated in long chain ceramides (ceramide recycling pathway), but that C2-ceramide was not hydrolyzed and thus not recycled. We propose that this is the basis for the chain length-specific heterogeneity observed in ceramide-induced apoptosis in these cells. These results also imply that keratinocytes utilize exogenous sphingolipids or ceramides to coordinate their own ceramide compositions.  相似文献   

17.
The effects of various bioactive sphingolipids (sphingosine 1-phosphate, sphingosine 1-phosphocholine, ceramide 1-phosphate, ceramide beta-glucoside and beta-lactoside, and gangliosides) on cell proliferation and apoptosis are reviewed. It is concluded that the balance between the bioeffector sphingolipids determines their overall effect on cell. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.  相似文献   

18.
鞘磷脂特别是鞘脂是髓鞘的主要成分,高度集中在中枢神经系统。在生理和病理生理条件下,具有生物活性的鞘磷脂及其代谢产物以及信号传导过程的重要性正在逐步被人们所认识。鞘脂代谢产物鞘氨醇及其前体物质神经酰胺与细胞生长停滞和凋亡有关,而1-磷酸鞘氨醇与增强细胞增殖、分化和细胞生存以及调节细胞的生理和病理过程有关,具有细胞外第一信使和细胞内第二信使的双重功能。这三者之间的相互转换、鞘脂代谢物的相对水平以及细胞的命运,受到鞘氨醇激酶的活性的强烈影响。鞘氨醇激酶可催化磷酸鞘氨醇产生1-磷酸鞘氨醇。1-磷酸鞘氨醇在中枢神经系统中与G蛋白偶联受体家族结合对中枢神经系统发挥作用。本文对鞘磷脂代谢过程中的鞘氨醇激酶、1-磷酸鞘氨醇及其受体与脑缺血之间的关系进行概述。  相似文献   

19.
Ceramide and sphingosine are sphingolipids with important functional and structural roles in cells. In this paper we report a new enzyme-based method to simultaneously quantify the levels of ceramide and sphingosine in biological samples. This method utilizes purified human recombinant acid ceramidase to completely hydrolyze ceramide to sphingosine, followed by derivatization of the latter with naphthalene-2,3-dialdehyde (NDA) and quantification by reverse-phase high-performance liquid chromatography. The limits of detection for sphingosine-NDA and ceramidase-derived sphingosine-NDA were 9.6 and 12.3 fmol, respectively, and the limits of quantification were 34.2 and 45.7 fmol, respectively. The recovery of sphingosine and ceramide standards quantified by this assay were between 95.6 and 104.6%. The relative standard deviations for the intra- and interday sphingosine assay were 2.1 and 4.5%, respectively, and those for the ceramide assay were 3.3 and 4.1%, respectively. To validate this procedure, we quantified ceramide and sphingosine in mouse plasma, white blood cells, and hemoglobin, the first reported time that the amounts of these lipids have been documented in individual blood components. We also used this technique to evaluate the ability of a novel ceramide analog, AD2646, to inhibit the hydrolytic activity of acid ceramidase. The results demonstrate that this new procedure can provide sensitive, reproducible, and simultaneous ceramide and sphingosine quantification. The technique also may be used for determining the activity and inhibition of ceramidases and may be adapted for quantifying sphingomyelin and sphingosine-1-phosphate levels. In the future it could be an important tool for investigators studying the role of ceramide/sphingosine metabolism in signal transduction, cell growth and differentiation, and cancer pathogenesis and treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号