首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The standard free energy for hydrolysis of the GTP analogue guanylyl- (a,b)-methylene-diphosphonate (GMPCPP), which is -5.18 kcal in solution, was found to be -3.79 kcal in tubulin dimers, and only -0.90 kcal in tubulin subunits in microtubules. The near-zero change in standard free energy for GMPCPP hydrolysis in the microtubule indicates that the majority of the free energy potentially available from this reaction is stored in the microtubule lattice; this energy is available to do work, as in chromosome movement. The equilibrium constants described here were obtained from video microscopy measurements of the kinetics of assembly and disassembly of GMPCPP-microtubules and GMPCP- microtubules. It was possible to study GMPCPP-microtubules since GMPCPP is not hydrolyzed during assembly. Microtubules containing GMPCP were obtained by assembly of high concentrations of tubulin-GMPCP subunits, as well as by treating tubulin-GMPCPP-microtubules in sodium (but not potassium) Pipes buffer with glycerol, which reduced the half-time for GMPCPP hydrolysis from > 10 h to approximately 10 min. The rate for tubulin-GMPCPP and tubulin-GMPCP subunit dissociation from microtubule ends were found to be about 0.65 and 128 s-1, respectively. The much faster rate for tubulin-GMPCP subunit dissociation provides direct evidence that microtubule dynamics can be regulated by nucleotide triphosphate hydrolysis.  相似文献   

2.
Background: Microtubules polymerized from pure tubulin show the unusual property of dynamic instability, in which both growing and shrinking polymers coexist at steady state. Shortly after its addition to a microtubule end, a tubulin subunit hydrolyzes its bound GTP. Studies with non-hydrolyzable analogs have shown that GTP hydrolysis is not required for microtubule assembly, but is essential for generating a dynamic polymer, in which the subunits at the growing tip have bound GTP and those in the bulk of the polymer have bound GDP. It has been suggested that loss of the ‘GTP cap’ through dissociation or hydrolysis exposes the unstable GDP core, leading to rapid depolymerization. However, evidence for a stabilizing cap has been very difficult to obtain.Results We developed an assay to determine the minimum GTP cap necessary to stabilize a microtubule from shrinking. Assembly of a small number of subunits containing a slowly hydrolyzed GTP analog (GMPCPP) onto the end of dynamic microtubules stabilized the polymer to dilution. By labeling the subunits with rhodamine, we measured the size of the cap and found that as few as 40 subunits were sufficient to stabilize a microtubule.Conclusion On the basis of statistical arguments, in which the proportion of stabilized microtubules is compared to the probability that when 40 GMPCPP-tubulin subunits have polymerized onto a microtubule end, all protofilaments have added at least one GMPCPP-tubulin subunit, our measurements of cap size support a model in which a single GTP subunit at the end of each of the 13 protofilaments of a microtubule is sufficient for stabilization. Depolymerization of a microtubule may be initiated by an exposed tubulin–GDP subunit at even a single position. These results have implications for the structure of microtubules and their means of regulation.  相似文献   

3.
Microtubules were assembled from purified tubulin in the buffer originally used to study dynamic instability (100 mM PIPES, 2 mM EGTA, 1 mM magnesium, 0.2 mM GTP) and then diluted in the same buffer to study the rate of disassembly. Following a 15-fold dilution, microtubule polymer decreased linearly to about 20% of the starting value in 15 sec. We determined the length distribution of microtubules before dilution, and prepared computer simulations of polymer loss for different assumed rates of disassembly. Our experimental data were consistent with a disassembly rate per microtubule of 60 microns/min. This is the total rate of depolymerization for microtubules in the rapid shortening phase, as determined by light microscopy of individual microtubules (Walker et al.: Journal of Cell Biology 107:1437-1448, 1988). We conclude, therefore, that microtubules began rapid shortening at both ends upon dilution. Moreover, since we could detect no lag between dilution and the onset of rapid disassembly, the transition from elongation to rapid shortening apparently occurred within 1 sec following dilution. Assuming that this transition (catastrophe) involves the loss of the GTP cap, and that cap loss is achieved by the sequential dissociation of GTP-tubulin subunits following dilution, we can estimate the maximum size of the cap based on the kinetic data and model interpretation of Walker et al. The cap is probably shorter than 40 and 20 subunits at the plus and minus ends, respectively.  相似文献   

4.
Microtubule architecture can vary with eukaryotic species, with different cell types, and with the presence of stabilizing agents. For in vitro assembled microtubules, the average number of protofilaments is reduced by the presence of sarcodictyin A, epothilone B, and eleutherobin (similarly to taxol) but increased by taxotere. Assembly with a slowly hydrolyzable GTP analogue GMPCPP is known to give 96% 14 protofilament microtubules. We have used electron cryomicroscopy and helical reconstruction techniques to obtain three-dimensional maps of taxotere and GMPCPP microtubules incorporating data to 14 A resolution. The dimer packing within the microtubule wall is examined by docking the tubulin crystal structure into these improved microtubule maps. The docked tubulin and simulated images calculated from "atomic resolution" microtubule models show tubulin heterodimers are aligned head to tail along the protofilaments with the beta subunit capping the microtubule plus end. The relative positions of tubulin dimers in neighboring protofilaments are the same for both types of microtubule, confirming that conserved lateral interactions between tubulin subunits are responsible for the surface lattice accommodation observed for different microtubule architectures. Microtubules with unconventional protofilament numbers that exist in vivo are likely to have the same surface lattice organizations found in vitro. A curved "GDP" tubulin conformation induced by stathmin-like proteins appears to weaken lateral contacts between tubulin subunits and could block microtubule assembly or favor disassembly. We conclude that lateral contacts between tubulin subunits in neighboring protofilaments have a decisive role for microtubule stability, rigidity, and architecture.  相似文献   

5.
Mechanism of the microtubule GTPase reaction   总被引:5,自引:0,他引:5  
The rate of GTP hydrolysis by microtubules has been measured at tubulin subunit concentrations where microtubules undergo net disassembly. This was made possible by using microtubules stabilized against disassembly by reaction with ethylene glycol bis-(succinimidylsuccinate) (EGS) as sites for the addition of tubulin-GTP subunits. The tubulin subunit concentration was varied from 25 to 90% of the steady state concentration, and there was no net elongation of stabilized microtubule seeds. The GTPase rate with EGS microtubules was linearly proportional to the tubulin-GTP subunit concentration when this concentration was varied by dilution and by using GDP to compete with GTP for the tubulin E-site. The linear dependence of the rate is consistent with a GTP mechanism in which hydrolysis is coupled to the tubulin-GTP subunit addition to microtubule ends. It is inconsistent with reaction schemes in which: microtubules are capped by a single tubulin-GTP subunit, which hydrolyzes GTP when a tubulin-GTP subunit adds to the end; hydrolysis occurs primarily in subunits at the interface of a tubulin-GTP cap and the tubulin-GDP microtubule core; hydrolysis is not coupled to subunit addition and occurs randomly in subunits in a tubulin-GTP cap. It was also found that GDP inhibition of the microtubule GTPase rate results from GDP competition for GTP at the tubulin subunit E-site. There is no additional effect of GDP on the GTPase rate resulting from exchange into tubulin subunits at microtubule ends.  相似文献   

6.
We have used cryoelectron microscopy to try to understand the structural basis for the role of GTP hydrolysis in destabilizing the microtubule lattice. We have measured a structural difference introduced into microtubules by replacing GTP with guanylyl- (alpha,beta)-methylene-diphosphonate (GMPCPP). In a stable GMPCPP microtubule lattice, the moire patterns change and the tubulin subunits increase in size by 1.5 A. This information provides a clue to the role of hydrolysis in inducing the structural change at the end of a microtubule during the transition from a growing to a shrinking phase.  相似文献   

7.
Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With >63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k(off). It was found that 10k(off)(GMPCPP) approximately equal k(off)(GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With <63% sites occupied, recovery times decreased as approximately [Tax](-1/5) for both types of microtubules. We conclude that the diffusion of taxol inside the microtubule bundle is hindered by rebinding events when open sites are within approximately 7 nm of each other.  相似文献   

8.
The molecular basis of microtubule dynamic instability is controversial, but is thought to be related to a "GTP cap." A key prediction of the GTP cap model is that the proposed labile GDP-tubulin core will rapidly dissociate if the GTP-tubulin cap is lost. We have tested this prediction by using a UV microbeam to cut the ends from elongating microtubules. Phosphocellulose-purified tubulin was assembled onto the plus and minus ends of sea urchin flagellar axoneme fragments at 21-22 degrees C. The assembly dynamics of individual microtubules were recorded in real time using video microscopy. When the tip of an elongating plus end microtubule was cut off, the severed plus end microtubule always rapidly shortened back to the axoneme at the normal plus end rate. However, when the distal tip of an elongating minus end microtubule was cut off, no rapid shortening occurred. Instead, the severed minus end resumed elongation at the normal minus end rate. Our results show that some form of "stabilizing cap," possibly a GTP cap, governs the transition (catastrophe) from elongation to rapid shortening at the plus end. At the minus end, a simple GTP cap is not sufficient to explain the observed behavior unless UV induces immediate recapping of minus, but not plus, ends. Another possibility is that a second step, perhaps a structural transformation, is required in addition to GTP cap loss for rapid shortening to occur. This transformation would be favored at plus, but not minus ends, to account for the asymmetric behavior of the ends.  相似文献   

9.
GTP hydrolysis during microtubule assembly   总被引:12,自引:0,他引:12  
The GTP cap model of dynamic instability [Mitchison, T., & Kirschner, M.W. (1984) Nature (London) 312, 237] postulates that a GTP cap at the end of most microtubules stabilizes the polymer and allows continuing assembly of GTP-tubulin subunits while microtubules without a cap rapidly disassemble. This attractive explanation for observed microtubule behavior is based on the suggestion that hydrolysis of GTP is not coupled to assembly but rather takes place as a first-order reaction after a subunit is assembled onto a polymer end. Carlier and Pantaloni [Carlier, M., & Pantaloni, D. (1981) Biochemistry 20, 1918] reported a lag of hydrolysis behind microtubule assembly and a first-order rate constant for hydrolysis (kh) of 0.25/min. A lag has not been demonstrated by other investigators, and a kh value that specifies such a slow rate of hydrolysis is difficult to reconcile with reported steady-state microtubule growth rates and frequencies of disassembly. We have looked for a lag using tubulin free of microtubule-associated protein at concentrations of 18.5-74 microM, assembly with and without glycerol, and two independent assays of GTP hydrolysis. No lag was observed under any of the conditions employed, with initial rates of hydrolysis increasing in proportion to rates of assembly. If hydrolysis is uncoupled from assembly, we estimate that kh must be at least 2.5/min and could be much greater, a result that we argue may be advantageous to the GTP cap model. We also describe a preliminary model of assembly coupled to hydrolysis that specifies formation and loss of a GTP cap, thus allowing dynamic instability.  相似文献   

10.
The role of GTP hydrolysis in microtubule dynamics has been reinvestigated using an analogue of GTP, guanylyl-(alpha, beta)-methylene-diphosphonate (GMPCPP). This analogue binds to the tubulin exchangeable nucleotide binding site (E-site) with an affinity four to eightfold lower than GTP and promotes the polymerization of normal microtubules. The polymerization rate of microtubules with GMPCPP-tubulin is very similar to that of GTP-tubulin. However, in contrast to microtubules polymerized with GTP, GMPCPP-microtubules do not depolymerize rapidly after isothermal dilution. The depolymerization rate of GMPCPP-microtubules is 0.1 s-1 compared with 500 s-1 for GDP-microtubules. GMPCPP also completely suppresses dynamic instability. Contrary to previous work, we find that the beta--gamma bond of GMPCPP is hydrolyzed extremely slowly after incorporation into the microtubule lattice, with a rate constant of 4 x 10(-7) s-1. Because GMPCPP hydrolysis is negligible over the course of a polymerization experiment, it can be used to test the role of hydrolysis in microtubule dynamics. Our results provide strong new evidence for the idea that GTP hydrolysis by tubulin is not required for normal polymerization but is essential for depolymerization and thus for dynamic instability. Because GMPCPP strongly promotes spontaneous nucleation of microtubules, we propose that GTP hydrolysis by tubulin also plays the important biological role of inhibiting spontaneous microtubule nucleation.  相似文献   

11.
M F Carlier  D Didry  D Pantaloni 《Biochemistry》1987,26(14):4428-4437
The tubulin concentration dependence of the rates of microtubule elongation and accompanying GTP hydrolysis has been studied over a large range of tubulin concentration. GTP hydrolysis followed the elongation process closely at low tubulin concentration and became gradually uncoupled at higher concentrations, reaching a limiting rate of 35-40 s-1. The kinetic parameters for microtubule growth were different at low and high tubulin concentrations. Elongation of microtubules has also been studied in solutions containing GDP and GTP in variable proportions. Only traces of GTP present in GDP were necessary to confer a high stability (low critical concentration) to microtubules. Pure GDP-tubulin was found unable to elongate microtubules in the absence of GTP but blocked microtubule ends with an equilibrium dissociation constant of 5-6 microM. These data were accounted for by a model within which, in the presence of GTP-tubulin at high concentration, microtubules grow at a fast rate with a large GTP cap; the GTP cap may be quite short in the region of the critical concentration; microtubule stability is linked to the strong interaction between GTP and GDP subunits at the elongating site; dimeric GDP-tubulin does not have the appropriate conformation to undergo reversible polymerization. These results are discussed with regard to possible role of GDP and GTP and of GTP hydrolysis in microtubule dynamics.  相似文献   

12.
A fluorescent derivative of paclitaxel, 3'-N-m-aminobenzamido-3'-N-debenzamidopaclitaxel (N-AB-PT), has been prepared in order to probe paclitaxel-microtubule interactions. Fluorescence spectroscopy was used to quantitatively assess the association of N-AB-PT with microtubules. N-AB-PT was found equipotent with paclitaxel in promoting microtubule polymerization. Paclitaxel and N-AB-PT underwent rapid exchange with each other on microtubules assembled from GTP-, GDP-, and GMPCPP-tubulin. The equilibrium binding parameters for N-AB-PT to microtubules assembled from GTP-tubulin were derived through fluorescence titration. N-AB-PT bound to two types of sites on microtubules (K(d1) = 61 +/- 7.0 nM and K(d2) = 3.3 +/- 0.54 microM). The stoichiometry of each site was less than one ligand per tubulin dimer in the microtubule (n(1) = 0.81 +/- 0.03 and n(2) = 0.44 +/- 0.02). The binding experiments were repeated after exchanging the GTP for GDP or for GMPCPP. It was found that N-AB-PT bound to a single site on microtubules assembled from GDP-tubulin with a dissociation constant of 2.5 +/- 0.29 microM, and that N-AB-PT bound to a single site on microtubules assembled from GMPCPP-tubulin with a dissociation constant of 15 +/- 4.0 nM. It therefore appears that microtubules contain two types of binding sites for paclitaxel and that the binding site affinity for paclitaxel depends on the nucleotide content of tubulin. It has been established that paclitaxel binding does not inhibit GTP hydrolysis and microtubules assembled from GTP-tubulin in the presence of paclitaxel contain almost exclusively GDP at the E-site. We propose that although all the subunits of the microtubule at steady state are the same "GDP-tubulin-paclitaxel", they are formed through two paths: paclitaxel binding to a tubulin subunit before its E-site GTP hydrolysis is of high affinity, and paclitaxel binding to a tubulin subunit containing hydrolyzed GDP at its E-site is of low affinity.  相似文献   

13.
Caplow M  Fee L 《Biochemistry》2003,42(7):2122-2126
There is no definitive evidence on the nature of the cap at microtubule ends that is responsible for dynamic instability behavior. It was, therefore, of interest that steady-state microtubules assembled in 20 mM P(i) buffer and pulsed for 15-60 min with [gamma-(32)P]GTP contained approximately 26 [(32)P]P(i)/microtubule [Panda et al. (2002) Biochemistry 41, 1609-1617]. It was concluded that microtubules are capped with a tubulin-GDP-P(i) subunit at the end of each its 13 protofilaments and that this is responsible for stabilizing microtubules in the growth phase. Also, because microtubules with [(32)P]P(i) were isolated despite the presence of 20 mM P(i), it was concluded that P(i) in terminal tubulin-GDP-P(i) subunits does not exchange with solvent. These observations are inconsistent with our finding that tubulin-GDP-P(i) subunits do not stabilize microtubules and with evidence that the nucleotide, and presumably also P(i), in subunits at microtubule ends exchanges with solvent. We have resolved this discrepancy by finding that during the pulse period the added [(32)P]GTP was almost quantitatively hydrolyzed. The so-formed [(32)P]P(i) labeled the 20 mM P(i) buffer, and this exchanged into tubulin-GDP subunits in the core of the microtubule. Evidence for this was our finding of virtually identical [(32)P]P(i) in microtubules pulsed with [(32)P]GTP with a specific activity that varied 11-fold by using either 100 or 1,100 microM GTP in the reaction. Label uptake was insensitive to the [(32)P]GTP specific activity because in both cases hydrolysis generated 20 mM [(32)P]P(i) with a virtually identical specific activity. Also, approximately 0.4 mol of [(32)P]P(i) /tubulin dimer was found in microtubules when steady-state microtubules in 20 mM P(i) were pulsed with a trace amount of [(32)P]P(i). This stoichiometry is consistent with a 25 mM K(d) previously reported for P(i) binding to tubulin-GDP subunits in microtubules. It is concluded that, under the conditions used for the [(32)P]GTP pulse labeling, (32)P was incorporated into the entire microtubule from [(32)P]P(i) released into the solution, rather than into a tubulin-GDP-P(i) cap, from [(32)P]GTP. Thus, there is no evidence that tubulin-GDP-P(i) subunits accumulate in and stabilize microtubule ends.  相似文献   

14.
Mechanism for oscillatory assembly of microtubules   总被引:1,自引:0,他引:1  
Dampened oscillations of microtubule assembly can accompany polymerization at high tubulin subunit concentrations. This presumably results from a synchronization of dynamic instability behavior, which generates a large population of rapidly disassembling microtubules, that liberate tubulin-GDP oligomers. Subunits in oligomers cannot assemble until they dissociate, to allow GDP-GTP exchange. To determine whether rapidly disassembling microtubules generate oligomers directly, we measured the rate of dilution-induced disassembly of tubulin-GDP microtubules and the rate of dissociation of GDP from the so-formed tubulin-GDP subunits. The rate of GDP dissociation from liberated subunits was found to correspond to that of tubulin-GDP subunits (t1/2 = 5 s), rather than tubulin-GDP oligomers. This indicates that tubulin-GDP subunits are released from microtubules undergoing rapid disassembly. Oligomers apparently form in a side reaction from the high concentration of tubulin-GDP subunits liberated from the synchronously disassembling microtubule population. The rate of subunit dissociation is 0.11 s-1 with oligomers formed by concentrating tubulin-GDP subunits and 0.045 s-1 with oligomers formed by cold-induced microtubule disassembly. This difference provides evidence that the conformation of tubulin-GDP subunits released from rapidly disassembling microtubules differs from tubulin-GDP subunits that were not recently in the microtubule lattice.  相似文献   

15.
We have developed video microscopy methods to visualize the assembly and disassembly of individual microtubules at 33-ms intervals. Porcine brain tubulin, free of microtubule-associated proteins, was assembled onto axoneme fragments at 37 degrees C, and the dynamic behavior of the plus and minus ends of microtubules was analyzed for tubulin concentrations between 7 and 15.5 microM. Elongation and rapid shortening were distinctly different phases. At each end, the elongation phase was characterized by a second order association and a substantial first order dissociation reaction. Association rate constants were 8.9 and 4.3 microM-1 s-1 for the plus and minus ends, respectively; and the corresponding dissociation rate constants were 44 and 23 s-1. For both ends, the rate of tubulin dissociation equaled the rate of tubulin association at 5 microM. The rate of rapid shortening was similar at the two ends (plus = 733 s-1; minus = 915 s-1), and did not vary with tubulin concentration. Transitions between phases were abrupt and stochastic. As the tubulin concentration was increased, catastrophe frequency decreased at both ends, and rescue frequency increased dramatically at the minus end. This resulted in fewer rapid shortening phases at higher tubulin concentrations for both ends and shorter rapid shortening phases at the minus end. At each concentration, the frequency of catastrophe was slightly greater at the plus end, and the frequency of rescue was greater at the minus end. Our data demonstrate that microtubules assembled from pure tubulin undergo dynamic instability over a twofold range of tubulin concentrations, and that the dynamic instability of the plus and minus ends of microtubules can be significantly different. Our analysis indicates that this difference could produce treadmilling, and establishes general limits on the effectiveness of length redistribution as a measure of dynamic instability. Our results are consistent with the existence of a GTP cap during elongation, but are not consistent with existing GTP cap models.  相似文献   

16.
Temperature-jump studies of microtubule dynamic instability   总被引:2,自引:0,他引:2  
Evidence for a slowly dissociating tubulin-GTP cap at microtubule ends was derived from observation of a delay for attaining a maximum disassembly rate, after the temperature of steady state microtubules was rapidly decreased from 36 to 34 degrees C. The possibility that the microtubules were capped by a single tubulin-GTP subunit on each subhelix was ruled out, by comparison of the disassembly kinetics following a temperature decrease and dilution. The existence of a subpopulation of microtubules that underwent irreversible or near irreversible disassembly was demonstrated by a 30-s lag for attainment of a maximum assembly rate, after steady state microtubules were shifted from 34 to 36 degrees C. A dynamic instability model predicts that a maximum assembly rate will be delayed until disappearance of a subpopulation of microtubules that disassemble before being recapped. Analysis indicates that the 30-s lag resulted because approximately 2% of the mass in the steady state microtubule population was uncapped and disassembling and not readily recapped. The half-time for recapping of disassembling microtubules, by addition of tubulin-GTP subunits to ends, was equal to or greater than 20 s. Since tubulin-GDP dissociated from microtubules at a rate of about 4500 s-1, slow recapping resulted in dramatic shortening of disassembling microtubules.  相似文献   

17.
Kinetics and mechanism of microtubule length changes by dynamic instability   总被引:2,自引:0,他引:2  
Microtubules at steady state were found to undergo dramatic changes in length, with only very little change in number concentration and mean length. This result is accounted for by a mechanism in which microtubules are capped at ends by tubulin-GTP subunits; loss of the tubulin-GTP cap at one end results in disassembly of all the tubulin-GDP subunits, so that the medial edge of the distal tubulin-GTP cap is exposed; the exposed tubulin-GTP cap is sufficiently stable, so that microtubule regrowth from the cap rather than loss of the cap occurs. This mechanism predicts that a bell-shaped length distribution of sheared microtubules will be transiently bimodal, with peaks of short and moderate length microtubules, in rearranging to an exponential length distribution. We have observed the predicted transient bimodal length distribution experimentally and in a Monte Carlo simulation. Dynamic instability has recently been accounted for by assuming that microtubule ends are capped with only a single tubulin-GTP subunit at each end of the five helices that serve as elongation sites. Such a minimal tubulin-GTP cap is apparently ruled out by our observations, which require that the remnant tubulin-GTP cap generated from disassembly be able to serve as nucleating site; we do not expect that a stable nucleating site can be generated from five tubulin-GTP subunits, oriented as the five helices that serve as elongation sites.  相似文献   

18.
The current two-state GTP cap model of microtubule dynamic instability proposes that a terminal crown of GTP-tubulin stabilizes the microtubule lattice and promotes elongation while loss of this GTP-tubulin cap converts the microtubule end to shortening. However, when this model was directly tested by using a UV microbeam to sever axoneme-nucleated microtubules and thereby remove the microtubule's GTP cap, severed plus ends rapidly shortened, but severed minus ends immediately resumed elongation (Walker, R.A., S. Inoué, and E.D. Salmon. 1989. J. Cell Biol. 108: 931–937).

To determine if these previous results were dependent on the use of axonemes as seeds or were due to UV damage, or if they instead indicate an intermediate state in cap dynamics, we performed UV cutting of self-assembled microtubules and mechanical cutting of axoneme-nucleated microtubules. These independent methods yielded results consistent with the original work: a significant percentage of severed minus ends are stable after cutting. In additional experiments, we found that the stability of both severed plus and minus ends could be increased by increasing the free tubulin concentration, the solution GTP concentration, or by assembling microtubules with guanylyl-(α,β)-methylene-diphosphonate (GMPCPP).

Our results show that stability of severed ends, particularly minus ends, is not an artifact, but instead reveals the existence of a metastable kinetic intermediate state between the elongation and shortening states of dynamic instability. The kinetic properties of this intermediate state differ between plus and minus ends. We propose a three-state conformational cap model of dynamic instability, which has three structural states and four transition rate constants, and which uses the asymmetry of the tubulin heterodimer to explain many of the differences in dynamic instability at plus and minus ends.

  相似文献   

19.
Stabilization of microtubules by tubulin-GDP-Pi subunits   总被引:5,自引:0,他引:5  
Microtubule dynamic instability has been accounted for by assuming that tubulin subunits at microtubule ends differ from the tubulin-GDP subunits that constitute the bulk of the microtubule. It has been suggested that this heterogeneity results because ends contain tubulin subunits that have not yet hydrolyzed an associated GTP molecule. Alternatively, in a recent model it was proposed that ends contain tubulin-GDP-Pi subunits from which Pi has not yet dissociated. The models differ in their predicted response to added ligands: because GDP in subunits in microtubules does not exchange with nucleotide in solution, the heterogeneity from a tubulin-GTP cap will not be eliminated by added GTP; however, the dissociability of Pi in tubulin-GDP-Pi subunits will allow a heterogeneity resulting from a tubulin-GDP-Pi cap to be eliminated by added excess Pi. Elimination of the heterogeneity is expected to be manifested by an elimination of dynamic instability behavior. Using video microscopy to study the kinetic behavior of individual microtubules under reaction conditions where dynamic instability is the dominant mechanism for microtubule length changes, we have determined the effects of 0.167 M Pi on the rate of subunit addition in the elongation phase, the rate of subunit dissociation in the rapid shortening phase, and the rates of the phase transitions from elongation to rapid shortening and from rapid shortening to growing. Since 0.167 M Pi did not decrease the subunit dissociation rate in the rapid shortening phase or the rate of the phase transition from growing to rapid shortening, our results provide no support for the hypothesis that tubulin-GDP-Pi subunits are responsible for dynamic instability behavior of microtubules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We describe in vitro microtubule assembly that exhibits, in bulk solution, behavior consistent with the GTP cap model of dynamic instability. Microtubules assembled from pure tubulin in the absence of free nucleotides could undergo one cycle of assembly, but could not sustain an assembly plateau. After the initial peak of assembly was reached and bound E-site GTP hydrolyzed to GDP, the microtubules gradually disassembled. We studied buffer conditions that maximized this disassembly while still allowing robust assembly to take place. While both glycerol and glutamate increased the rate of initial assembly and then slowed disassembly, magnesium promoted initial assembly and, surprisingly, enhanced disassembly. After cooling, a second cycle of assembly was unsuccessful unless GTP or the hydrolyzable GTP analogue GMPCPOP was readded. The nonhydrolyzable GTP analogues GMPPNP and GMPPCP could not support the second assembly cycle in the absence of E-site GTP. Analysis using HPLC found no evidence that GMPPNP, GMPPCP, or ATP could bind to free tubulin, and these nucleotides did not compete with GTP for the E-site. We have, however, demonstrated that the nonhydrolyzable GTP analogues and ATP do have an important effect on microtubule assembly. GMPPNP, GMPPCP, and ATP could each enhance the rate of assembly and stabilize the plateau of assembled microtubules against disassembly, while not binding appreciably to free tubulin. We conclude that these nucleotides, as well as GTP itself, enhance assembly by binding to a site on microtubules that is not present on free, unpolymerized tubulin. We estimate the affinity (KD) of the polymeric site for nucleotide triphosphates to be approximately 10(-4)M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号