首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overexpression of anti-apoptotic Bcl-2 family proteins may play an important role in the aggressive behavior of prostate cancer cells and their resistance to therapy. The Bcl-2 homology 3 domain (BH3) is a uniquely important functional element within the pro-apoptotic class of the Bcl-2-related proteins, mediating their ability to dimerize with other Bcl-2-related proteins and promote apoptosis. The BH3 inhibitors (BH3Is) function by disrupting the interactions mediated by the BH3 domain between pro- and anti-apoptotic members of the Bcl-2 family and liberating more Bax/Bak to induce mitochondrial membrane permeabilization. LNCaP-derived C4-2 human prostate cancer cells are quite resistant to non-tagged, human recombinant soluble Apo2 ligand [Apo2L, also Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL], a tumor specific drug that is now in clinical trials. However, when Apo2L/TRAIL was combined with the Bcl-xL inhibitor, BH3I-2′, it induced apoptosis synergistically through activation of Caspase-8 and the proapoptotic Bcl-2 family member Bid, resulting in the activation of effector Caspase-3 and proteolytic cleavage of Poly(ADP-ribose) polymerase, events that were blocked by the pan-caspase inhibitor zVAD-fmk. Our data indicate that, in combination with the BH3 mimetic, BH3I-2′, Apo2L/TRAIL synergistically induces apoptosis in C4-2 human prostate cancer cells through both the extrinsic and intrinsic apoptotic pathways.  相似文献   

2.
Programmed cell death (apoptosis) is used by multicellular organisms during development and to maintain homeostasis within mature tissues. One of the first genes shown to regulate apoptosis was bcl-2. Subsequently, a number of Bcl-2-related proteins have been identified. Despite overwhelming evidence that Bcl-2 proteins are evolutionarily conserved regulators of apoptosis, their precise biochemical function remains controversial. Three biochemical properties of Bcl-2 proteins have been identified: their ability to localize constitutively and/or inducibly to the outer mitochondrial, outer nuclear and endoplasmic reticular membranes, their ability to form heterodimers with proteins bearing an amphipathic helical BH3 domain, and their ability to form ion-conducting channels in synthetic membranes. The discovery that mitochondria can play a key part in the induction of apoptosis has focused attention on the role that Bcl-2 proteins may have in regulating either mitochondrial physiology or mitochondria-dependent caspase activation. Here we attempt to synthesize our current understanding of the part played by mitochondria in apoptosis with a consideration of how Bcl-2 proteins might control cell death through an ability to regulate mitochondrial physiology.  相似文献   

3.
Programmed cell death: a missing link is found   总被引:1,自引:0,他引:1  
Two families of proteins have advanced our understanding of the molecular basis of programmed cell death (PCD) in animal cells - the caspases and Bcl-2-related proteins. While caspases lie at the heart of the death programme, Bcl-2-related proteins act as key intracellular regulators. Although there has been considerable progress in elucidating the biochemical functions of caspases, how Bcl-2-related proteins regulate caspase activation and thereby PCD, has remained a mystery. One key to resolving this mystery seems to lie with a new third family of proteins related to the Caenorhabditis elegans cell-death protein CED-4, which connects Bcl-2-related proteins to caspases. An important step in defining this new family has been made by the identification of a human CED-4 homologue.  相似文献   

4.
Mutations in RPE65 protein is characterized by the loss of photoreceptors, although the molecular pathways triggering retinal cell death remain largely unresolved. The role of the Bcl-2 family of proteins in retinal degeneration is still controversial. However, alteration in Bcl-2-related proteins has been observed in several models of retinal injury. In particular, Bax has been suggested to play a crucial role in apoptotic pathways in murine glaucoma model as well as in retinal detachment-associated cell death. We demonstrated that Bcl-2-related signaling pathway is involved in Rpe65-dependent apoptosis of photoreceptors during development of the disease. Pro-apoptotic Bax α and β isoforms were upregulated in diseased retina. This was associated with a progressive reduction of anti-apoptotic Bcl-2, reflecting imbalanced Bcl-2/Bax ratio as the disease progresses. Moreover, specific translocation of Bax β from cytosol to mitochondria was observed in Rpe65-deficient retina. This correlated with the initiation of photoreceptor cell loss at 4 months of age, and further increased during disease development. Altogether, these data suggest that Bcl-2-apoptotic pathway plays a crucial role in Leber’s congenital amaurosis disease. They further highlight a new regulatory mechanism of Bax-dependent apoptosis based on regulated expression and activation of specific isoforms of this protein.  相似文献   

5.
The Bcl-2 homology 3 (BH3) domain is crucial for the death-inducing and dimerization properties of pro-apoptotic members of the Bcl-2 protein family, including Bak, Bax, and Bad. Here we report that synthetic peptides corresponding to the BH3 domain of Bak bind to Bcl-xL, antagonize its anti-apoptotic function, and rapidly induce apoptosis when delivered into intact cells via fusion to the Antennapedia homeoprotein internalization domain. Treatment of HeLa cells with the Antennapedia-BH3 fusion peptide resulted in peptide internalization and induction of apoptosis within 2-3 h, as indicated by caspase activation and subsequent poly(ADP-ribose) polymerase cleavage, as well as morphological characteristics of apoptosis. A point mutation within the BH3 peptide that blocks its ability to bind to Bcl-xL abolished its apoptotic activity, suggesting that interaction of the BH3 peptide with Bcl-2-related death suppressors, such as Bcl-xL, may be critical for its activity in cells. While overexpression of Bcl-xL can block BH3-induced apoptosis, treatment with BH3 peptides resensitized Bcl-xL-expressing cells to Fas-mediated apoptosis. BH3-induced apoptosis was blocked by caspase inhibitors, demonstrating a dependence on caspase activation, but was not accompanied by a dramatic early loss of mitochondrial membrane potential or detectable translocation of cytochrome c from mitochondria to cytosol. These findings demonstrate that the BH3 domain itself is capable of inducing apoptosis in whole cells, possibly by antagonizing the function of Bcl-2-related death suppressors.  相似文献   

6.
Pro-survival Bcl-2-related proteins, critical regulators of apoptosis, contain a hydrophobic groove targeted for binding by the BH3 domain of the pro-apoptotic BH3-only proteins. The solution structure of the pro-survival protein Bcl-w, presented here, reveals that the binding groove is not freely accessible as predicted by previous structures of pro-survival Bcl-2-like molecules. Unexpectedly, the groove appears to be occluded by the C-terminal residues. Binding and kinetic data suggest that the C-terminal residues of Bcl-w and Bcl-x(L) modulate pro-survival activity by regulating ligand access to the groove. Binding of the BH3-only proteins, critical for cell death initiation, is likely to displace the hydrophobic C-terminal region of Bcl-w and Bcl-x(L). Moreover, Bcl-w does not act only by sequestering the BH3-only proteins. There fore, pro-survival Bcl-2-like molecules probably control the activation of downstream effectors by a mechanism that remains to be elucidated.  相似文献   

7.
The Bcl-2 family of proteins: regulators of cell death and survival   总被引:15,自引:0,他引:15  
The Bcl-2 protein inhibits apoptosis induced by a variety of signals, in a range of cell types and in diverse organisms, and it is implicated in both normal development and oncogenesis. Despite this central role, the mechanism of action of Bcl-2 is not yet clear. Recent studies have uncovered a number of Bcl-2-related gene products that regulate apoptosis either negatively or positively, and Bcl-2 forms heterodimers with at least one of these proteins, Bax. This article discusses the role of the Bcl-2 family of proteins in the light of these findings.  相似文献   

8.
Background: The Bcl-2 family of proteins plays a key role in the regulation of apoptosis. Some family members prevent apoptosis induced by a variety of stimuli, whereas others promote apoptosis. Competitive dimerisation between family members is thought to regulate their function. Homologous domains within individual proteins are necessary for interactions with other family members and for activity, although the specific mechanisms might differ between the pro-apoptotic and anti-apoptotic proteins.Results: Using a cell-free system based on extracts of Xenopus eggs, we have investigated the role of the Bcl-2 homology domain 3 (BH3) from different members of the Bcl-2 family. BH3 domains from the pro-apoptotic proteins Bax and Bak, but not the BH3 domain of the anti-apoptotic protein Bcl-2, induced apoptosis in this system, as determined by the rapid activation of specific apoptotic proteases (caspases) and by DNA fragmentation. The apoptosis-inducing activity of the BH3 domains requires both membrane and cytosolic fractions of cytoplasm, involves the release of cytochrome c from mitochondria and is antagonistic to Bcl-2 function. Short peptides, corresponding to the minimal sequence of BH3 domains required to bind anti-apoptotic Bcl-2 family proteins, also trigger apoptosis in this system.Conclusions: The BH3 domains of pro-apoptotic proteins are sufficient to trigger cytochrome c release, caspase activation and apoptosis. These results support a model in which pro-apoptotic proteins, such as Bax and Bak, bind to Bcl-2 via their BH3 domains, inactivating the normal ability of Bcl-2 to suppress apoptosis. The ability of synthetic peptides to reproduce the effect of pro-apoptotic BH3 domains suggests that such peptides may provide the basis for engineering reagents to control the initiation of apoptosis.  相似文献   

9.
10.
11.
Neuronotropic viruses induce apoptosis in neurons, and Bcl-2-related anti-apoptotic proteins and caspase inhibitors decrease mortality from acute viral encephalitis. Infected neurons develop cytoplasmic blebbing characteristic of apoptosis, but a paucity of apoptotic nuclear changes potentially indicates unique aspects of virus-induced neuronal apoptosis that remain to be discovered.  相似文献   

12.
Gastrins, including amidated gastrin (Gamide) and glycine-extended gastrin (Ggly), are known to accelerate the growth of gastric and colorectal cancer cells by stimulation of proliferation and inhibition of apoptosis. Gamide controls apoptosis by regulation of proteins of the Bcl-2 family and by regulation of the activation of caspases. However the interactions between Ggly and proteins of the Bcl-2 family and caspases are not known. Since in other systems G proteins of the Rho family inhibit apoptosis via interaction with proteins of the Bcl-2 family, leading to changes in caspase activities, we have compared the role of Rho family G proteins in regulation of Bcl-2-like (Bad/Bax/Bcl-xl) protein expression and caspase 3 activation by Ggly and Gamide. The effects of the specific inhibitors C3 (for Rho) and Y-27632 (for ROCK), and of dominant negative mutants of Rac, Cdc42 and PAK, were investigated in the gastric epithelial cell line IMGE-5. Apoptosis was induced by serum starvation and confirmed by annexin V staining and caspase 3 activation. Ggly inhibits caspase 3 activation via a Bcl-2-like protein-mediated pathway which requires activation of both Rho/ROCK and Rac/Cdc42/PAK. Gamide inhibits caspase 3 activation via redundant Bcl-2-like protein-mediated pathways which involve alternative activation of Rac/Cdc42/PAK and Rho/ROCK. Gamide and Ggly differentially activate members of Rho family G proteins which in turn regulate different proteins of the Bcl-2 family leading to changes in caspase 3 activity. The findings offer potential targets for blocking the growth-stimulating effects of these gastrins.  相似文献   

13.
Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak.The regulated elimination of cells by apoptosis is a key mechanism of development, tissue homeostasis and defense. In vertebrates, apoptosis is regulated through two pathways, the death receptor-mediated (extrinsic) and the mitochondrial (intrinsic) pathway, which is activated by numerous apoptotic stimuli. Mitochondrial apoptosis is characterized by loss of mitochondrial outer membrane integrity and the release of mitochondrial intermembrane space proteins, most notably cytochrome c, which leads to the activation of the caspase-9 and effector caspases.1Release of cytochrome c is governed by proteins of the B-cell lymphoma 2 (Bcl-2) family.2 The Bcl-2 family consists of three groups, whose expression and interaction decide cell survival. The anti-apoptotic Bcl-2 proteins include Bcl-2, Bcl-XL (B-cell lymphoma-extra large), Bcl-w (Bcl-2-like protein 2), Mcl-1 (myeloid cell leukemia sequence 1) and A1 (Bcl-2-related protein A1). The pro-apoptotic group of BH3-only proteins (containing a BH3-domain: Bim (Bcl-2-interacting mediator of cell death), Bid (BH3-interacting domain death agonist), Puma (p53-upregulated modulator of apoptosis), Noxa (Phorbol-12-myristate-13-acetate-induced protein 1), Bad (Bcl-2-associated death promoter), Bik (Bcl-2-interacting killer) and Hrk (activator of apoptosis hara-kiri)) activate the pro-apoptotic effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak). Bax and Bak can replace each other in most situations, but the presence of one of them is required for mitochondrial apoptosis. Upon activation Bax and Bak form oligomers in the outer mitochondrial membrane and cause the release of cytochrome c. How Bax and Bak are activated is still under debate. Different activation models have been proposed and investigated.According to the direct activation model BH3-only proteins can directly, by physical interaction activate Bax and Bak.3 The model was derived in studies investigating synthetic BH3-domain peptides in in vitro systems, that is, isolated mitochondria or liposomes, where peptides encompassing the BH3-domains of Bim or Bid (‘activator'' BH3-only proteins) were able to activate Bax. Peptides derived from the BH3-only proteins Bad, Bik, Hrk, Noxa or Puma did not activate Bax directly. However, these peptides can bind to anti-apoptotic Bcl-2 proteins with varying preferences.4 As this may neutralize a combination of anti-apoptotic proteins it may facilitate Bax/Bak activation by activator BH3-only proteins. Consequently, this group of BH3-only proteins has been named ‘sensitizer'' or ‘derepressor'' BH3-only proteins.3, 5, 6, 7 The direct activation model has received recent support by structural studies of activator BH3-domains bound to Bax.8 That study also found that the BH3-only peptides used previously lacked a residue that is important in the activation of Bax, and the previous results may have to be reconsidered. Indeed, a recent study illustrates that placing the BH3-domain from the various BH3-only proteins into intact Bid protein enhances Bax/Bak-activating capacity of the BH3-domains of Bid, Bim, Puma, Bmf (Bcl-2-modifying factor), Bik and Hrk.9The displacement (or indirect activation) model on the other hand posits that Bax and Bak are held in check by anti-apoptotic Bcl-2 proteins and auto-activate when this interaction is broken by BH3-only proteins (displacement). BH3-only proteins can bind to anti-apoptotic Bcl-2 proteins and upon apoptotic stimulation may cause the displacement of these proteins from Bax and Bak, which may lead to the activation of effectors. BH3-peptides derived from Bim and Puma can bind to all anti-apoptotic Bcl-2 proteins and its corresponding proteins exert killing upon overexpression, whereas Bad, Bmf, Bid, Bik, Hrk and Noxa display binding patterns restricted to certain anti-apoptotic Bcl-2 proteins.4 It was therefore suggested that Bax/Bak activation requires the neutralization/displacement of several anti-apoptotic proteins, which may be achieved by one BH3-only protein with broadly binding characteristics (such as Bim) or by the combination of BH3-only proteins with restricted binding capabilities (for instance Bad plus Noxa).10, 11The models have been further refined; the ‘embedded together'' model additionally considers the dynamic interaction of the proteins with the mitochondrial membrane,12 and it has been proposed that the models can be unified by taking two ‘modes'' of inhibition into account: anti-apoptotic Bcl-2 proteins have a dual function in inactivating both, BH3-only proteins and effectors. Pro-apoptotic signals cause the release of activator BH3-only proteins from sequestration with anti-apoptotic Bcl-2 proteins. Free BH3-only proteins directly activate effectors, however, cell death may still not be initiated because the effectors are then held in check by anti-apoptotic Bcl-2 proteins. Free activator BH3-only proteins are required to activate effectors.13This model unifies the two above models in the sense that it incorporates aspects of both, inhibition and displacement as well as direct activation. However, the core difference between the (direct) activation and the displacement model appears to be irreconcilable: in the activation model Bax and Bak are inactive unless receiving a stimulus from BH3-only proteins whereas in the displacement model they are active unless bound to anti-apoptotic proteins. Thus, in the absence of all other proteins one model predicts that Bax/Bak are active, the other that they are inactive. Obviously they cannot be both.The direct activation model has initially been established with Bax and the displacement model with Bak. The data are very strong that Bax is activated by direct interaction with BH3-only proteins. Recombinant Bak can also be directly activated by recombinant tBid,14 and Bid/BH3-chimaeras can activate recombinant Bak missing its C terminus.9 However, since Bak is normally inserted into the outer mitochondrial membrane where it may be bound to numerous other Bcl-2-family members, it has been difficult directly to test activation of Bak in the physiological situation.One possibility to ‘unify'' the original models may be in a model where Bax is physiologically activated by direct activation (Bax is inactive until receiving a signal through BH3-only proteins) whereas Bak is activated indirectly (auto-activates when the inhibition by Bcl-2-like proteins is relieved). Here we test this possibility of indirect Bak activation. We targeted anti-apoptotic Bcl-2 family proteins using RNAi. In this setting, protein concentrations and conditions are physiological, which avoids some of the problems associated with overexpression or cell-free experiments. Non-malignant cells may respond differently to the loss of anti-apoptotic Bcl-2 proteins compared with tumor cells.15 In this study, using non-malignant cells, we targeted all anti-apoptotic Bcl-2 molecules in combinations of two. In the absence of apoptotic stimuli we observed that the combined loss of Bcl-XL and Mcl-1 was sufficient to induce apoptosis. The direct activator proteins Bid, Bim and Puma were not needed. These observations provide evidence for indirect activation of Bak.  相似文献   

14.
How Bcl-2 and its pro-survival relatives prevent activation of the caspases that mediate apoptosis is unknown, but they appear to act through the caspase activator apoptosis protease-activating factor 1 (Apaf-1). According to the apoptosome model, the Bcl-2-like proteins preclude Apaf-1 activity by sequestering the protein. To explore Apaf-1 function and to test this model, we generated monoclonal antibodies to Apaf-1 and used them to determine its localization within diverse cells by subcellular fractionation and confocal laser scanning microscopy. Whereas Bcl-2 and Bcl-x(L) were prominent on organelle membranes, endogenous Apaf-1 was cytosolic and did not colocalize with them, even when these pro-survival proteins were overexpressed or after apoptosis was induced. Immunogold electron microscopy confirmed that Apaf-1 was dispersed in the cytoplasm and not on mitochondria or other organelles. After the death stimuli, Bcl-2 and Bcl-x(L) precluded the release of the Apaf-1 cofactor cytochrome c from mitochondria and the formation of larger Apaf-1 complexes, which are steps that presage apoptosis. However, neither Bcl-2 nor Bcl-x(L) could prevent the in vitro activation of Apaf-1 induced by the addition of exogenous cytochrome c. Hence, rather than sequestering Apaf-1 as proposed by the apoptosome model, Bcl-2-like proteins probably regulate Apaf-1 indirectly by controlling upstream events critical for its activation.  相似文献   

15.
BNIP3 (formerly NIP3) is a pro-apoptotic, mitochondrial protein classified in the Bcl-2 family based on limited sequence homology to the Bcl-2 homology 3 (BH3) domain and COOH-terminal transmembrane (TM) domain. BNIP3 expressed in yeast and mammalian cells interacts with survival promoting proteins Bcl-2, Bcl-X(L), and CED-9. Typically, the BH3 domain of pro-apoptotic Bcl-2 homologues mediates Bcl-2/Bcl-X(L) heterodimerization and confers pro-apoptotic activity. Deletion mapping of BNIP3 excluded its BH3-like domain and identified the NH(2) terminus (residues 1-49) and TM domain as critical for Bcl-2 heterodimerization, and either region was sufficient for Bcl-X(L) interaction. Additionally, the removal of the BH3-like domain in BNIP3 did not diminish its killing activity. The TM domain of BNIP3 is critical for homodimerization, pro-apoptotic function, and mitochondrial targeting. Several TM domain mutants were found to disrupt SDS-resistant BNIP3 homodimerization but did not interfere with its killing activity or mitochondrial localization. Substitution of the BNIP3 TM domain with that of cytochrome b(5) directed protein expression to nonmitochondrial sites and still promoted apoptosis and heterodimerization with Bcl-2 and Bcl-X(L). We propose that BNIP3 represents a subfamily of Bcl-2-related proteins that functions without a typical BH3 domain to regulate apoptosis from both mitochondrial and nonmitochondrial sites by selective Bcl-2/Bcl-X(L) interactions.  相似文献   

16.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

17.
Normal individuals have mature T lymphocytes that are capable of reacting to self-antigens and can be activated by cross-reacting environmental antigens. The mechanism that maintains immune tolerance and prevents these activated autoreactive T cells from causing autoimmune disease is unclear. We have previously hypothesized that activation-induced apoptosis of previously activated autoreactive T cells in the target organ is a major mechanism for maintaining tolerance. Here I review the current evidence to support this hypothesis. It is proposed that when activated autoreactive T cells enter the target organ, they are reactivated mainly by non-professional antigen-presenting cells (APC) and deleted by activation-induced apoptosis through the Fas (CD95) pathway before producing significant target organ damage. This apoptosis occurs because the reactivated T cells do not receive sufficient costimulation from the non-professional APC to up-regulate their expression of Bcl-2-related anti-apoptotic proteins, which inhibit the CD95 pro-apoptotic pathway. This is in contrast to the situation in peripheral lymphoid organs, where reactivation of T cells by professional APC results in sufficient costimulation-induced up-regulation of Bcl-2-related proteins to inhibit the CD95 pathway and allow T cell proliferation and survival as memory T cells. Activation-induced apoptosis of alloreactive T cells in allografts can similarly account for spontaneous allograft acceptance, as occurs after MHC-mismatched liver transplantation.  相似文献   

18.
Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines that promotes apoptosis and NF-kappaB activation. Here we show that recombinant hu-TRAIL initiates the activation of multiple caspases, the loss of mitochondrial transmembrane potential, the cleavage of BID and the redistribution of mitochondrial cytochrome c. However, whereas Bcl-2 efficiently blocked UV radiation-induced cytochrome c release and consequent apoptosis of CEM cells, it failed to do either in the context of TRAIL treatment. Thus, TRAIL engages a death pathway that is at least partially routed via the mitochondria, but in contrast with other stimuli that engage this pathway, TRAIL-induced cytochrome c release is not regulated by Bcl-2.  相似文献   

19.
Germinal center (GC) B cells are highly susceptible to apoptosis. The cellular mechanism regulating this sensitivity, however, has not yet been fully delineated. To investigate whether follicular dendritic cells (FDC) are capable of regulating the susceptibility to apoptosis of GC B cells, we constructed a GC model in vitro: emperipolesis of tonsillar B cells by FDC. We then analyzed the expressions of apoptosis-related proteins (Bcl-2 and Fas) on the cells by three-color flow cytometry. B cells nonentrapped by FDC decreased rapidly in number owing to early apoptosis in vitro, whereas entrapped B cells were rescued for at least 18 h and showed peculiar regulation of Fas and Bcl-2. GC founder cells (CD38+, IgD+; GCFC) and GC B cells (CD38+, IgD-) showed approximately a twofold increased expression of Fas; in contrast, mantle zone B cells (CD38-, IgD+) and memory B cells (CD38-, IgD-) showed no changes. Bcl-2 expression in mantle zone and memory B cells was reduced by approximately one-half; however, GCFC and GC B cells continued to express little Bcl-2 and this did not change. Our findings strongly suggest that FDC play a part in the modulation of the susceptibility to apoptosis on B cells within GC.  相似文献   

20.
Presenilin-associated protein (PSAP) has been identified as a mitochondrial proapoptotic protein. However, the mechanism by which PSAP induces apoptosis remains unknown. To this end, we have established an inducible expression system. Using this system, we have examined the roles of B-cell lymphoma 2 (Bcl-2) family proteins, cytochrome c, Smac (Smac/Diablo, second mitochondria-derived activator of caspases/direct IAP binding protein with low PI), and Apaf-1 (apoptotic protease-activating factor) in PSAP-induced apoptosis. Our results demonstrate that knockdown of Apaf-1 abolished PSAP-induced caspase activation and poly(ADP ribose) polymerase (PARP) cleavage, indicating that the apoptosome formation triggered by cytochrome c is crucial for PSAP-induced apoptosis. Our data also demonstrate that knockdown of Smac abolished PSAP-induced caspase activation and PARP cleavage, indicating that, in addition to Apaf-1 or apoptosome formation, Smac is also essential for PSAP-induced apoptosis. However, interestingly, our data demonstrate that overexpression of Bcl-2 and Bcl-xL did not protect cells from PSAP-induced apoptosis, and that knockdown of Bid, Bax, and Bak had no effect on PSAP-induced cytochrome c and Smac release, indicating that PSAP-induced apoptosis is not regulated by Bcl-2 family proteins. These results strongly suggest that PSAP evokes mitochondrial apoptotic cascades via a novel mechanism that is not regulated by Bcl-2 family proteins, but that both the formation of cytochrome c-Apaf-1 apoptosome and the presence of Smac are absolutely required for PSAP-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号