首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformation of both rat and chicken fibroblasts by the src oncogene leads to a four- to fivefold increase in the rate of glucose transport and in the level of the glucose transporter protein. We have previously shown that, with chicken embryo fibroblasts, transformation leads to a reduction in the rate of degradation of the transporter, with little or no increase in the rate of its biosynthesis. We now show that, with the rat-1 cell line, the opposite result was obtained. src-induced transformation led to an increase in transporter biosynthesis, with little effect on turnover. A src-induced increase in transporter mRNA entirely accounted for the increase in biosynthesis of the protein. By contrast, in chicken embryo fibroblasts, the level of transporter mRNA was low and was not induced to rise by src transformation. Thus, src induced an increase in the level of the glucose transport protein by fundamentally different mechanisms in chicken embryo fibroblasts and rat-1 cells. To test whether this difference was due to rat-1 cells being an immortalized cell line, we measured transporter mRNA levels in primary fibroblast cultures from rat embryos and in parallel cultures transformed by src. Transporter mRNA was inducible by src in these cells. Thus, the difference in mRNA inducibility between chicken and rat cells is not due to immortalization.  相似文献   

2.
3.
4.
Potassium fluxes, ouabain binding, and Na+ and K+ intracellular concentrations were determined for cultures of growing normal, density-inhibited and Rous sarcoma virus-transformed chicken embryo fibroblasts. No significant differences in K+ influx or ouabain binding were detected between growing normal cells and Rous sarcoma virus-transformed cells; however, ouabain binding and ouabain-sensitive K+ influx were 1.5- to 1.8-fold lower in density-inhibited cells. Thus, potassium influx in this system can be classified as a growth-related, but not transformation-specific change. As determined by both flame photometry and radioisotopic (42K) equilibration, growing normal and density-inhibited cells had similar potassium contents, whereas transformed cells exhibited 1.4-fold higher potassium levels. Sodium ion levels, as measured by flame photometry, were also 2- to 4.5-fold higher in transformed than normal or density-inhibited cells. Complementary studies of potassium efflux showed a 1.3- to 1.5-fold higher rate (based on the percentage of pool exiting the cell) in growing normal versus density-inhibited or transformed fibroblasts. Because of the larger potassium pool in transformed cells, efflux based on absolute number of potassium ions is similar in normal and transformed chicken embryo fibroblasts.  相似文献   

5.
6.
Ubiquitin is a heat shock protein in chicken embryo fibroblasts.   总被引:61,自引:10,他引:51       下载免费PDF全文
Clones containing heat-inducible mRNA sequences were selected from a cDNA library prepared from polyadenylated RNA isolated from heat-shocked chicken embryo fibroblasts. One recombinant DNA clone, designated clone 7, hybridized to a 1.2-kilobase RNA that was present in normal cells and increased fivefold during heat shock. Clone 7 also hybridized to an RNA species of 1.7 kilobases that was present exclusively in heat-shocked cells. In vitro translation of mRNA hybrid selected from clone 7 produced a protein product with a molecular weight of approximately 8,000. Increased synthesis of a protein of similar size was detected in chicken embryo fibroblasts after heat shock. DNA sequence analysis of clone 7 indicated its protein product has amino acid sequences identical to bovine ubiquitin. In addition, clone 7 contains tandem copies of the ubiquitin sequences contiguous to each other with no untranslated sequences between them. We discuss some possible roles for ubiquitin in the heat shock response.  相似文献   

7.
Northern blot analysis revealed that metallothionein (MT) mRNAs accumulate after inhibition of protein synthesis with cycloheximide (CHX) in primary cultures of chick embryo hepatocytes and fibroblasts, as well as in an established mouse hepatoma cell line. Inhibition of RNA synthesis with actinomycin D (AMD) led to rapid loss of MT mRNAs in these cells, whereas CHX dramatically retarded the rate of MT mRNA decay (t1/2 greater than 24 h). These results suggest that CHX causes MT mRNA accumulation primarily by increasing stability of MT mRNA. Thus, changes in MT mRNA turn-over rates may play an important role in regulating the accumulation of MT mRNA. The half-lives of MT mRNAs in chicken and mouse cells were determined by oligodeoxyribonucleotide excess solution hybridization with RNA samples extracted after different periods of exposure to AMD. The half-life of chicken MT (cMT) mRNA in uninduced chicken embryo hepatocytes was 3.6 h. Induction of cMT mRNA by pretreatment of these cells with zinc (Zn) prior to exposure to AMD, did not alter the half-life of cMT mRNA significantly. In contrast, cadmium (Cd) induction led to a 2.5-fold increase in the stability of this mRNA. In uninduced chicken embryo fibroblasts, cMT mRNA levels were too low to allow accurate determination of half-life using the methods employed here. However, the half-life of this mRNA in Zn-induced chicken embryo fibroblasts was 6.2 h, whereas it was 9.3 h in Cd-induced cells. Thus, the turn-over rate of cMT mRNA after Cd-induction is very similar in chick embryo fibroblasts and hepatocytes. These data suggest that the accumulation of MT mRNA in chicken cells may reflect, in part, metal-specific effects on MT mRNA stability. The half-lives of mouse MT-I and MT-II (mMT-I and mMT-II) mRNAs in uninduced BNL hepatoma cells were identical (9.2 h), and were not effectively altered after induction by metals (Zn, Cd) or interleukin-1 beta (IL-1 beta). However, mMT mRNAs in pachytene spermatocytes and round spermatids, freshly isolated from the adult testes, were 2.2- to 4.5-fold more stable than in hepatoma cells. These results suggest that cell-type specific accumulation of mMT mRNAs may be regulated, in part, by mRNA stability.  相似文献   

8.
A calcium-modulated protein has been isolated from secondary cultures of virus transformed chicken embryo fibroblasts and has been characterized in terms of its physical, chemical, and functional properties. These properties demonstrate that this protein is a calmodulin and distinguish it from other calcium-modulated proteins found in various muscle and non-muscle tissues. In addition, this transformed cell calmodulin has been shown to be indistinguishable in both structure and function from normal cell calmodulins isolated from chicken gizzard and brain. A novel change in the electrophoretic behavior of these calmodulin preparations that is dependent on sample history has been observed. These alterations may be the basis for previous reports of tissue specific differences in calmodulin and for some of the differences occasionally observed in peptide maps of calmodulins.  相似文献   

9.
Transformation of chicken embryo fibroblasts with Rous sarcoma virus results in cells with an enhanced rate of hexose uptake. We have examined transport of the glucose analogs 2-deoxyglucose and 3-O-methylglucose in cells infected with a temperature sensitive variant of the virus. In cells shifted from restrictive to permissive conditions for transformation, increased transport of the non-phosphorylatable analog 3-O-methylglucose occurs at the same time as that of 2-deoxyglucose, a phosphorylatable analog. This enhanced rate of transport can be observed within three hours of the temperature shift. There is a corresponding decrease in the transport rate of both analogs following shift to the restrictive temperature. These results suggest that increased transport is likely to be the primary event in causing transformation-specific changes in sugar metabolism. We have also examined uptake into the internal pools of both the phosphorylated and non-phosphorylated forms of 2-deoxyglucose in normal cells and in cells transformed by the wild-type virus. These data indicate a corresponding increase in the rate of accumulation of the free sugar in transformed cells and point to transport as the rate limiting step in the accumulation of 2-deoxyglucose in both normal and transformed chicken embryo cells.  相似文献   

10.
Previous studies on the synthesis and function of the protein synthetic machinery through the growth cycle of normal cultured hamster embryo fibroblasts (HA) were extended here to a series of four different clonal lines of polyoma virus-transformed HA cells. Under our culture conditions, these transformed cells could enter a stationary phase characterized by no mitotic cells, very low rates of DNA synthesis, and arrest in a post-mitotic pre-DNA synthetic state. Cellular viability was initially high in stationary phase but, unlike normal cells, transformed cells slowly lost viability. The rate of protein synthesis in the stationary phase of the transformed cells fell to 25-30% of the exponential rate. Though this reduction was similar to that seen in normal cells, it was accomplished by different means. The specific reduction in the ribosome complement per cell to values below that of any cycling cell seen in normal cells, was not seen in any of the transformed lines. This observation, which implies a loss of normal control of ribisome synthesis through the growth cycle after transformation, was confirmed in normal Chinese hamster embryo fibroblasts and transformed CHO cell lines. Normal control of ribosome synthesis was restored in L-73 and LR-73, growth control revertants of one of the transformed CHO lines. The transformed lines reduced their protein synthetic rates in stationary phase either by a greater reduction in the proportion of functioning ribosomes than that seen in normal cells or by a decrease in the elongation rate of functioning ribosomes; the latter effect was not seen in the normal cells. A model for growth control of normal cells and its derangement in transformed cells is presented.  相似文献   

11.
When fibroblasts are transformed by the src oncogene, there is a two- to fivefold increase in glucose transport and in the level of immunoprecipitable glucose transporter protein. In chicken embryo fibroblasts (CEFs), this increase is correlated with a comparable reduction in the rate at which the glucose transporter protein is turned over. In contrast, in mammalian fibroblasts glucose transporter biosynthesis is increased by src, but there is little or no change in its turnover. To further understand the action of src on transporter turnover, we investigated whether a mammalian transporter can be stabilized by src in a chicken cell environment. The human type 1 glucose transporter protein (hGT), originally cloned from HepG2 cells, was expressed in CEFs or Rat-1 fibroblasts by using a retroviral vector. In CEFs transformed by a temperature-sensitive src mutant, tsNY68, turnover of hGT was lower at the permissive temperature (36 degrees C) than at the nonpermissive temperature (42 degrees C). When this protein was expressed in CEFs transformed by wild-type src, no difference in turnover was observed at the two temperatures. In the case of Rat-1 cells transformed by the temperature-sensitive src mutant tsLA29, turnover of hGT was the same at the permissive temperature (35 degrees C) as at the nonpermissive temperature (39.5 degrees C). These data demonstrate that a heterologous glucose transporter behaves in the same way in chicken and rat cells as the respective endogenous transporter, i.e., when src is active, the protein is stablilized against turnover in chicken cells but not in rat cells.  相似文献   

12.
The effect of transformation on hexose and amino acid transport has been studied using whole cells and membrane vesicles of chicken embryo fibroblasts infected with the temperature-sensitive mutant of the Rous sarcoma virus, TS-68. In whole cells, TS-68-infected chicken embryo fibroblasts cultured at the permissive temperature (37 degrees C) had a 2-fold higher rate of 2-deoxy-D-glucose uptake than the same cells cultured at the non-permissive temperature (41 degrees C). However, both the non-transformed and transformed cells had comparable rates of alpha-aminoisobutyric acid transport. Membrane vesicles, isolated from TS-68-infected chicken embryo fibroblasts cultured at 41 degrees C or 37 degrees C, displayed carrier-mediated, intravesicular uptake of D-glucose and alpha-aminoisobutyric acid. Membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 37 degrees C had an approx. 50% greater initial rate of stereospecific hexose uptake than the membrane vesicles from fibroblasts cultured at 41 degrees C. The two types of membrane vesicle had similar uptake rates of alpha-aminoisobutyric acid. The results of hexose and amino acid uptake by the membrane vesicles correlated well with those observed with the whole cells. Km values for stereospecific D-glucose uptake by the membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 41 and 37 degrees C were similar, but the V value was greater for the membrane vesicles from TS-68-infected cells cultured at 37 degrees C. Cytochalasin B competitively inhibited stereospecific hexose uptake in both types of membrane vesicle. These findings suggest that the membrane vesicles retained many of the features of hexose and amino acid transport observed in whole cells, and that the increased rate of hexose transport seen in the virally-transformed chicken embryo fibroblasts was due to an increase in the number or availability of hexose carriers.  相似文献   

13.
WANG  HONGQINGZHANG 《Cell research》1992,2(2):119-128
By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.  相似文献   

14.
Chicken heart mesenchymal cells do not proliferate in medium of physiological composition containing plasma (S. Balk, Proc. Natl. Acad. Sci. USA 77:6606-6610, 1980). To understand the molecular events involved in cell quiescence and in the initiation of cell division under physiological conditions, we examined the differences in the patterns of protein synthesis of quiescent, hormone-stimulated, and Rous sarcoma virus-transformed chicken heart mesenchymal cells. We describe the expression of a 20,000-kilodalton (kDa) polypeptide actively synthesized by quiescent cells but not by their transformed counterparts. Normal chicken heart mesenchymal cells stimulated with epidermal growth factor and insulin also repressed the synthesis of the 20,000-kDa polypeptide while actively growing but synthesized increasing amounts of the protein at high cell density (confluence). The synthesis of the 20,000-kDa protein is not restricted to chicken heart mesenchymal cells, since confluent, density-arrested chicken embryo fibroblasts also expressed high levels of the protein. Transformed chicken heart mesenchymal cells and embryo fibroblasts did not synthesize the protein even at high cell density. The 20,000-kDa polypeptide accumulated in the culture medium.  相似文献   

15.
We have studied the differential effect of dimethyl-10,12-benz(a)acridine (DBMAcr) on the synthesis of RNA of chicken or mouse fibroblasts in culture and that of some RNA-containing viruses such as Rous sarcoma virus and Mengovirus. DMBAcr at low concentrations blocks the cell multiplication of both normal and Rous sarcoma virus-transformed chicken fibroblasts in culture; it affects transformed cells more than normal ones. The cell growth inhibiting effect of DMBAcr is reversible after short periods of incubation. DMBAcr depresses the synthesis of cellular DNA and RNA in parallel. Concurrently the synthesis of protein proceedes at a relatively high rate in DMBAcr-treated cultures. Its inhibitory effect on cellular RNA synthesis is mostly due to a block in the formation of 28 S and 18 S ribosomal RNA species; in contrast, the synthesis of 45 S ribosomal RNA precursor is proceeding at almost control rate. Also, the synthesis of heterogeneous nuclear RNA is not blocked by DMBAcr. The production of Rous sarcoma virus in transformed fibroblasts is not affected by DMBAcr. Since this is correlated with persisting high rates of protein and heterogenous nuclear RNA synthesis, the effects of DMBAcr suggest that the synthesis of Rous sarcoma virus-RNA shares the specificity of messenger and heterogeneous nuclear RNA. DMBAcr inhibits the synthesis of viral RNA of Mengovirus under conditions where the synthesis of total cellular RNA is not appreciably depressed, suggesting its differential effect on the DNA-directed and the RNA-directed RNA synthesis.  相似文献   

16.
The biosynthesis and secretion of collagen proteins was studied in cultures of normal human embryo fibroblasts at different passages and growth stages as well as in cultures of human embryo fibroblasts transformed by oncogenic virus SV-40. It was found that normal fibroblasts maintain at a constant level the collagen synthesis throughout 20 passages, which is typical of proliferating and resting cells. Virus-transformed cells produce 3-4 times less collagen proteins on a per cell count. Normal and transformed fibroblasts do not differ in terms of total protein synthesis. Secretion of collagen and non-collagen proteins in transformed cell cultures appeared to be much lower than in normal cell cultures. Study of synthesized proteins by polyacrylamide gel electrophoresis showed that both types of cells secrete collagen proteins predominantly as polymers containing interchain S-S bonds of 3-helix molecules. Study of the protein-synthesizing activity of two polysomal fractions, i.e. membrane bound and free polysomes, isolated from the cells of both types in a cell-free system showed that membrane-bound polysomes from transformed fibroblasts synthesize collagen much less actively in comparison with normal cells. However, in transformed cells free polysomes, in contrast with normal cells, are active participants of a cell-free collagen protein synthesis.  相似文献   

17.
The effect of transformation on hexose and amino acid transport has been studied using whole cells and membrane vesicles of chicken embryo fibroblasts infected with the temperature-sensitive mutant of the Rous sarcoma virus, TS-68. In whole cells, TS-68-infected chicken embryo fibroblasts cultured at the permissive temperature (37°C) had a 2-fold higher rate of 2-deoxy-d-glucose uptake than the same cells cultured at the non-permissive temperature (41°C). However, both the non-transformed and transformed cells had comparable rates of α-aminoisobutyric acid transport. Membrane vesicles, isolated from TS-68-infected chicken embryo fibroblasts cultured at 41°C or 37°C, displayed carrier-mediated, intravesicular uptake of d-glucose and α-aminoisobutyric acid. Membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 37°C had an approx. 50% greater initial rate of stereospecific hexose uptake than the membrane vesicles from fibroblasts cultured at 41°C. The two types of membrane vesicle had similar uptake rates of α-aminoisobutyric acid. The results of hexose and amino acid uptake by the membrane vesicles correlated well with those observed with the whole cells. Km values for stereospecific d-glucose uptake by the membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 41 and 37°C were similar, but the V value was greater for the membrane vesicles from TS-68-infected cells cultured at 37°C. Cytochalasin B competitively inhibited stereospecific hexose uptake in both types of membrane vesicle. These findings suggest that the membrane vesicles retained many of the features of hexose and amino acid transport observed in whole cells, and that the increased rate of hexose transport seen in the virallytransformed chicken embryo fibroblasts was due to an increase in the number or availability of hexose carriers.  相似文献   

18.
P M Kelley  M J Schlesinger 《Cell》1978,15(4):1277-1286
The addition of certain amino acid analogues (canavanine, hydroxynorvaline, o-methylthreonine) or a mild heat shock at 45 degrees C caused chicken embryo fibroblasts to increase rapidly the synthesis of three proteins (molecular weights 22,000, 76,000 and 95,000 daltons) to levels which dominate the cells biosynthetic capacity and exceed the level of synthesis of the major cell structural proteins. Actinomycin D blocked the increased synthesis of p22, p76 and p95 in both analogue and heat shock-treated cells, while cycloheximide addition during the "induction" period blocked formation of these proteins only in analoguetreated cells. The elevated levels of synthesis for this set of proteins began to decrease shortly after restoration of the normal amino acid or normal temperature, and the normal pattern of cell protein synthesis was found 8 hr later. Induction of a similar set of proteins was detected in mouse L cells and baby hamster kidney cells after treatment with amino acid analogues or heat shock. Several laboratories have reported synthesis of proteins with similar molecular weights in cells subjected to conditions that alter glucose metabolism, and we speculate that these proteins may be associated with a hexose transport system.  相似文献   

19.
20.
Replication of reticuloendotheliosis viruses (REV) in cultures of chicken and duck fibroblasts leads to some cell death soon after infection. This cell killing was used to develop a plaque assay for Trager duck spleen necrosis virus (TDSNV) on duck embryo fibroblasts. A normal replicative cell cycle was required for normal virus production and the development of cytopathic effects in chicken cells exposed to TDSNV. The latent period was about two days. Stationary chicken embryo fibroblasts could be infected by REV; DNA synthesis was required, but protein synthesis was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号