首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY To define the components of variation for wing shape in Drosophila in relation to what is known about the developmental control of wing patterning, we have characterized shape variation in the wings of 12 randomly chosen highly inbred lines. Despite large differences in wing size between males and females, and between flies reared at 18°C or 25°C, wing shape is remarkably unaffected by these variables and is highly line specific. The shape of each intervein region of the wing appears to be independently regulated at the genetic level, consistent with the role of secreted growth factors in establishing the locations of wing veins. Sex and temperature were found to have different effects on cell number in two intervein regions, with the result that wing shape is to a large extent independent of cell density. Dietary cholesterol was also shown to affect the breadth of the central intervein region, consistent with an effect on the strength of Hedgehog signaling during wing development. We conclude that wing shape is under tighter genetic control than wing size, and hypothesize that this control is achieved in large part by gene activity at the level of wing vein determination and differentiation.  相似文献   

2.
The Drosophila wing has been used as a model in studies of morphogenesis and evolution; the use of such models can contribute to our understanding of mechanisms that promote morphological divergence among populations and species. We mapped quantitative trait loci (QTL) affecting wing size and shape traits using highly inbred introgression lines between D. simulans and D. sechellia, two sibling species of the melanogaster subgroup. Eighteen QTL peaks that are associated with 12 wing traits were identified, including two principal components. The wings of D. simulans and D. sechellia significantly diverged in size; two of the QTL peaks could account for part of this interspecific divergence. Both of these putative QTLs were mapped at the same cytological regions as other QTLs for intraspecific wing size variation identified in D. melanogaster studies. In these regions, one or more loci could account for intra- and interspecific variation in the size of Drosophila wings. Three other QTL peaks were related to a pattern of interspecific variation in wing size and shape traits that is summarized by one principal component. In addition, we observed that female wings are significantly larger and longer than male wings and the second, fourth and fifth longitudinal veins are closer together at the distal wing area. This pattern was summarized by another principal component, for which one QTL was mapped.  相似文献   

3.
Gadau J  Page RE  Werren JH 《Genetics》2002,161(2):673-684
There is a 2.5-fold difference in male wing size between two haplodiploid insect species, Nasonia vitripennis and N. giraulti. The haploidy of males facilitated a full genomic screen for quantitative trait loci (QTL) affecting wing size and the detection of epistatic interactions. A QTL analysis of the interspecific wing-size difference revealed QTL with major effects and epistatic interactions among loci affecting the trait. We analyzed 178 hybrid males and initially found two major QTL for wing length, one for wing width, three for a normalized wing-size variable, and five for wing seta density. One QTL for wing width explains 38.1% of the phenotypic variance, and the same QTL explains 22% of the phenotypic variance in normalized wing size. This corresponds to a region previously introgressed from N. giraulti into N. vitripennis that accounts for 44% of the normalized wing-size difference between the species. Significant epistatic interactions were also found that affect wing size and density of setae on the wing. Screening for pairwise epistatic interactions between loci on different linkage groups revealed four additional loci for wing length and four loci for normalized wing size that were not detected in the original QTL analysis. We propose that the evolution of smaller wings in N. vitripennis males is primarily the result of major mutations at few genomic regions and involves epistatic interactions among some loci.  相似文献   

4.
The nature of genetic variation for Drosophila longevity in a population of recombinant inbred lines was investigated by estimating quantitative genetic parameters and mapping quantitative trait loci (QTL) for adult life span in five environments: standard culture conditions, high and low temperature, and heat-shock and starvation stress. There was highly significant genetic variation for life span within each sex and environment. In the analysis of variance of life span pooled over sexes and environments, however, the significant genetic variation appeared in the genotype x sex and genotype x environment interaction terms. The genetic correlation of longevity across the sexes and environments was not significantly different from zero in these lines. We estimated map positions and effects of QTL affecting life span by linkage to highly polymorphic roo transposable element markers, using a multiple-trait composite interval mapping procedure. A minimum of 17 QTL were detected; all were sex and/or environment-specific. Ten of the QTL had sexually antagonistic or antagonistic pleiotropic effects in different environments. These data provide support for the pleiotropy theory of senescence and the hypothesis that variation for longevity might be maintained by opposing selection pressures in males and females and variable environments. Further work is necessary to assess the generality of these results, using different strains, to determine heterozygous effects and to map the life span QTL to the level of genetic loci.  相似文献   

5.
Four-way cross (4WC) involving four different inbred lines frequently appears in the cotton breeding programs. However, linkage analysis and quantitative trait loci (QTL) mapping with molecular markers in cotton has largely been applied to populations derived from a cross between two inbred lines, and few results of QTL dissection were conducted in a 4WC population. In this study, an attempt was made to construct a linkage map and identify QTL for yield and fiber quality traits in 4WC derived from four different inbred lines in Gossypium hirsutum L. A linkage map was constructed with 285 SSR loci and one morphological locus, covering 2113.3 cM, approximately 42% of the total recombination length of the cotton genome. A total of 31 QTL with 5.1–25.8% of the total phenotypic variance explained were detected. Twenty-four common QTL across environments showed high stability, and six QTL were environment-specific. Several genomic segments affecting multiple traits were identified. The advantage of QTL mapping using a 4WC were discussed. This study presents the first example of QTL mapping using a 4WC population in upland cotton. The results presented here will enhance the understanding of the genetic basis of yield and fiber quality traits and enable further marker-assisted selection in cultivar populations in upland cotton.  相似文献   

6.
Li R  Lyons MA  Wittenburg H  Paigen B  Churchill GA 《Genetics》2005,169(3):1699-1709
Rodent inbred line crosses are widely used to map genetic loci associated with complex traits. This approach has proven to be powerful for detecting quantitative trait loci (QTL); however, the resolution of QTL locations, typically approximately 20 cM, means that hundreds of genes are implicated as potential candidates. We describe analytical methods based on linear models to combine information available in two or more inbred line crosses. Our strategy is motivated by the hypothesis that common inbred strains of the laboratory mouse are derived from a limited ancestral gene pool and thus QTL detected in multiple crosses are likely to represent shared ancestral polymorphisms. We demonstrate that the combined-cross analysis can improve the power to detect weak QTL, can narrow support intervals for QTL regions, and can be used to separate multiple QTL that colocalize by chance. Moreover, combined-cross analysis can establish the allelic states of a QTL among a set of parental lines, thus providing critical information for narrowing QTL regions by haplotype analysis.  相似文献   

7.
The suitability of barley ( Hordeum vulgare L.) grain for malting depends on many criteria, including the size, shape and uniformity of the kernels. Here, image analysis was used to measure kernel size and shape attributes (area, perimeter, length, width, F-circle and F-shape) in grain samples of 140 doubled-haploid lines from a two-rowed (cv Harrington) by six-rowed (cv Morex) barley cross. Interval mapping was used to map quantitative trait loci (QTLs) affecting the means and within-sample standard deviations of these attributes using a 107-marker genome map. Regions affecting one or more kernel size and shape traits were detected on all seven chromosomes. These included one near the vrs1 locus on chromosome 2 and one near the int-c locus on chromosome 4. Some, but not all, of the QTLs exhibited interactions with the environment and some QTLs affected the within-sample variability of kernel size and shape without affecting average kernel size and shape. When QTL analysis was conducted using data from only the two-rowed lines, the region on chromosome 2 was not detected but QTLs were detected elsewhere in the genome, including some that had not been detected in the analysis of the whole population. Analysis of only the six-rowed lines did not detect any QTLs affecting kernel size and shape attributes. QTL alleles that made kernels larger and/or rounder also tended to improve malt quality and QTL alleles that increased the variability of kernel size were associated with poor malt quality.  相似文献   

8.
Quantitative Trait Loci for Murine Growth   总被引:24,自引:6,他引:18       下载免费PDF全文
Body size is an archetypal quantitative trait with variation due to the segregation of many gene loci, each of relatively minor effect, and the environment. We examine the effects of quantitative trait loci (QTLs) on age-specific body weights and growth in the F(2) intercross of the LG/J and SM/J strains of inbred mice. Weekly weights (1-10 wk) and 75 microsatellite genotypes were obtained for 535 mice. Interval mapping was used to locate and measure the genotypic effects of QTLs on body weight and growth. QTL effects were detected on 16 of the 19 autosomes with several chromosomes carrying more than one QTL. The number of QTLs for age-specific weights varied from seven at 1 week to 17 at 10 wk. The QTLs were each of relatively minor, subequal effect. QTLs affecting early and late growth were generally distinct, mapping to different chromosomal locations indicating separate genetic and physiological systems for early and later murine growth.  相似文献   

9.
Leips J  Gilligan P  Mackay TF 《Genetics》2006,172(3):1595-1605
Life-history theory and evolutionary theories of aging assume the existence of alleles with age-specific effects on fitness. While various studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture of such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age. We identified one QTL on the second chromosome and one or two QTL affecting fecundity on the third chromosome, but these QTL affected fecundity only at 1 week of age. There was more genetic variation for fecundity at 4 weeks of age than at 1 week of age and there was no genetic correlation between early and late-age fecundity. These results suggest that different loci contribute to the variation in fecundity as the organism ages. Our data provide support for the mutation accumulation theory of aging as applied to reproductive senescence. Comparing the results from this study with our previous work on life-span QTL, we also find evidence that antagonistic pleiotropy may contribute to the genetic basis of senescence in these lines as well.  相似文献   

10.
Zhang YM  Mao Y  Xie C  Smith H  Luo L  Xu S 《Genetics》2005,169(4):2267-2275
Many commercial inbred lines are available in crops. A large amount of genetic variation is preserved among these lines. The genealogical history of the inbred lines is usually well documented. However, quantitative trait loci (QTL) responsible for the genetic variances among the lines are largely unexplored due to lack of statistical methods. In this study, we show that the pedigree information of the lines along with the trait values and marker information can be used to map QTL without the need of further crossing experiments. We develop a Monte Carlo method to estimate locus-specific identity-by-descent (IBD) matrices. These IBD matrices are further incorporated into a mixed-model equation for variance component analysis. QTL variance is estimated and tested at every putative position of the genome. The actual QTL are detected by scanning the entire genome. Applying this new method to a well-documented pedigree of maize (Zea mays L.) that consists of 404 inbred lines, we mapped eight QTL for the maize male flowering trait, growing degree day heat units to pollen shedding (GDUSHD). These detected QTL contributed >80% of the variance observed among the inbred lines. The QTL were then used to evaluate all the inbred lines using the best linear unbiased prediction (BLUP) technique. Superior lines were selected according to the estimated QTL allelic values, a technique called marker-assisted selection (MAS). The MAS procedure implemented via BLUP may be routinely used by breeders to select superior lines and line combinations for development of new cultivars.  相似文献   

11.
路明  周芳  谢传晓  李明顺  徐云碧  张世煌 《遗传》2007,29(9):1131-1138
为了增加单位面积产量, 玉米育种者已经开始了更密植更紧凑株型的选育。叶夹角和叶向值是评价玉米株型的重要指标。本研究以掖478×丹340的500个F2单株为作图群体, 构建了具有138个位点的SSR标记连锁图谱, 图谱总长度为1 394.9 cM, 平均间距10.1 cM。利用397个F2:3家系对叶夹角和叶向值进行QTL定位分析, 结果表明: 叶夹角和叶向值分别检测到6和8个QTL, 累计解释表型变异41.0%和60.8%, 单个QTL的贡献率在2.9%~13.6%之间。与叶夹角和叶向值有关的基因主要作用方式为加性和部分显性。此外两个性状共检测到9对上位性互作位点, 表明上位性互作在叶夹角和叶向值的遗传中也起较重要的作用。  相似文献   

12.
Plant cell walls of forage provide a major source of energy for ruminant animals. Digestion of cell walls is limited by the presence of lignin, therefore the improving the digestibility of forages by reducing lignin content is a major goal in forage crop breeding programs. A recombinant inbred line maize population was used to map quantitative trait loci (QTL) for neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) of leaf-sheath and stalk tissues. All traits were positively genetically correlated. The larger genetic correlations were between NDF and ADF in sheaths (r = 0.84), NDF and ADF (r = 0.96), ADF and ADL (r = 0.83), and NDF and ADL (r = 0.76) in stalks. Twelve QTL were detected for NDF and 11 QTL for ADF in leaf-sheaths. Eight QTL detected for both traits were defined by the same or linked marker loci. Eight QTL were associated with leaf-sheath ADL. Eleven QTL were detected for NDF and ADF, and 12 QTL for ADL in stalks. Nine of eleven QTL detected for both NDF and ADF in stalks coincided in their genomic position. A high proportion of QTL detected for these traits had the same parental effects and genomic locations, suggesting that it is only necessary to select on one fiber component (NDF or ADF) to improve digestibility. Favorable correlated responses of unselected fiber components are expected due to coincident genomic locations of QTL and the high genetic correlation between fiber components. Several QTL detected in this study coincided in their positions with putative cellulose synthase genes from maize.  相似文献   

13.
A population of 294 recombinant inbred lines (RIL) derived from Yuyu22, an elite maize hybrid extending broadly in China, has been constructed to investigate the genetic basis of grain yield, and associated yield components in maize. The main-effect quantitative trait loci (QTL), digenic epistatic interactions, and their interactions with the environment for grain yield and its three components were identified by using the mixed linear model approach. Thirty-two main-effect QTL and forty-four pairs of digenic epistatic interactions were detected for the four measured traits in four environments. Our results suggest that both additive effects and epistasis (additive × additive) effects are important genetic bases of grain yield and its components in the RIL population. Only 30.4% of main-effect QTL for ear length were involved in epistatic interactions. This implies that many loci in epistatic interactions may not have significant effects for traits alone but may affect trait expression by epistatic interaction with the other loci.  相似文献   

14.
A diploid, potato mapping population consisting of 149 individuals was assessed in three consecutive years for important agronomic and quality traits: tuber shape, regularity of tuber shape, eye depth, mean tuber weight, and tuber flesh color. Analysis of variance showed that the genotype had the largest influence on the phenotypic scores but effect of the genotype × year interactions was also strong. Using this data and an existing genetic map, a quantitative trait loci (QTL) analysis was conducted. From four to seven QTL were detected for each trait except tuber flesh color, which was determined by a major QTL on chromosome III explaining 76.8% of the trait variance. Additionally, a minor QTL for flesh color was localized on chromosome II. For the other traits, significant QTL were detected: for tuber shape on chromosome X, for regularity of tuber shape on chromosome III, for eye depth on chromosome IV, and for tuber weight on chromosome I. Some detected QTL confirmed previous studies, but new ones were also identified.  相似文献   

15.
The improvement of grain quality, such as protein content (PC) and amino acid composition, has been a major concern of rice breeders. We constructed a population of 190 recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Nanyangzhan to map the quantitative trait locus or loci (QTL) for amino acid content (AAC) as characterized by each of the AACs, total essential AAC, and all AAC. Using the data collected from milled rice in 2002 and 2004, we identified 18 chromosomal regions for 19 components of AAC. For 13 of all the loci, the Zhenshan 97 allele increased the trait values. Most QTL were co-localized, forming ten QTL clusters in 2002 and six in 2004. The QTL clusters varied in both effects and locations, and the mean values of variation explained by individual QTL in the clusters ranged from 4.3% to 28.82%. A relatively strong QTL cluster, consisting of up to 19 individual QTL, was found at the bottom of chromosome 1. The major QTL clusters identified for two different years were coincident. A wide coincidence was found between the QTL we detected and the loci involved in amino acid metabolism pathways, including N assimilation and transfer, and amino acid or protein biosynthesis. The results will be useful for candidate gene identification and marker-assisted favorable allele transfer in rice breeding programs.  相似文献   

16.
缺磷是抑制全球水稻产量主要因素之一。本研究利用Asomonori(粳型)/IR24(籼型)杂交重组自交株系,对5个水稻苗期性状(相对苗高、相对根长、相对根重、相对苗重以及相对总重)在缺磷条件下的响应QTL进行定位。共检测到20个水稻苗期生长对缺磷响应的QTL位点,分别位于第1(4QTLs)、第4(4QTLs)、第5(2QTLs)、第7、第8(4QTLs)、第9(2QTLs)、第11(2QTLs)和第12号染色体上,其中13个QTLs位于与C3029C、XNpb302、C621B、C621C、R2976和C1263分子标记紧密连锁的6个基因组区域上。另外,每个性状均能从双亲中检测到正负效应QTL位点,这些能解释重组自交系群体中出现超亲和连续分布的现象。本文主要报道了水稻第5、第7和第11染色体上存在水稻苗期生长对缺磷响应的QTL位点。研究表明,该结果及其中检测到的QTLs两侧的连锁分子标记可用于水稻苗期耐低磷性分子育种。  相似文献   

17.
W R Wu  W M Li  D Z Tang  H R Lu  A J Worland 《Genetics》1999,151(1):297-303
Using time-related phenotypic data, methods of composite interval mapping and multiple-trait composite interval mapping based on least squares were applied to map quantitative trait loci (QTL) underlying the development of tiller number in rice. A recombinant inbred population and a corresponding saturated molecular marker linkage map were constructed for the study. Tiller number was recorded every 4 or 5 days for a total of seven times starting at 20 days after sowing. Five QTL were detected on chromosomes 1, 3, and 5. These QTL explained more than half of the genetic variance at the final observation. All the QTL displayed an S-shaped expression curve. Three QTL reached their highest expression rates during active tillering stage, while the other two QTL achieved this either before or after the active tillering stage.  相似文献   

18.
Pasyukova EG  Vieira C  Mackay TF 《Genetics》2000,156(3):1129-1146
In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested.  相似文献   

19.
Quantitative trait locus (QTL) studies of a skeletal trait or a few related skeletal components are becoming commonplace, but as yet there has been no investigation of pleiotropic patterns throughout the skeleton. We present a comprehensive survey of pleiotropic patterns affecting mouse skeletal morphology in an intercross of LG/J and SM/J inbred strains (N = 1040), using QTL analysis on 70 skeletal traits. We identify 798 single-trait QTL, coalescing to 105 loci that affect on average 7-8 traits each. The number of traits affected per locus ranges from only 1 trait to 30 traits. Individual traits average 11 QTL each, ranging from 4 to 20. Skeletal traits are affected by many, small-effect loci. Significant additive genotypic values average 0.23 standard deviation (SD) units. Fifty percent of loci show codominance with heterozygotes having intermediate phenotypic values. When dominance does occur, the LG/J allele tends to be dominant to the SM/J allele (30% vs. 8%). Over- and underdominance are relatively rare (12%). Approximately one-fifth of QTL are sex specific, including many for pelvic traits. Evaluating the pleiotropic relationships of skeletal traits is important in understanding the role of genetic variation in the growth and development of the skeleton.  相似文献   

20.
D R Shook  T E Johnson 《Genetics》1999,153(3):1233-1243
We have identified, using composite interval mapping, quantitative trait loci (QTL) affecting a variety of life history traits (LHTs) in the nematode Caenorhabditis elegans. Using recombinant inbred strains assayed on the surface of agar plates, we found QTL for survival, early fertility, age of onset of sexual maturity, and population growth rate. There was no overall correlation between survival on solid media and previous measures of survival in liquid media. Of the four survival QTL found in these two environments, two have genotype-environment interactions (GEIs). Epistatic interactions between markers were detected for four traits. A multiple regression approach was used to determine which single markers and epistatic interactions best explained the phenotypic variance for each trait. The amount of phenotypic variance accounted for by genetic effects ranged from 13% (for internal hatching) to 46% (for population growth). Epistatic effects accounted for 9-11% of the phenotypic variance for three traits. Two regions containing QTL that affected more than one fertility-related trait were found. This study serves as an example of the power of QTL mapping for dissecting the genetic architecture of a suite of LHTs and indicates the potential importance of environment and GEIs in the evolution of this architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号