首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast metacaspase (Yca1p) is required for the execution of apoptosis upon a wide range of stimuli. However, the specific degradome of this yeast protease has not been unraveled so far. By combining different methodologies described as requisites for a protein to be considered a protease substrate, such as digestome analysis, cleavage of recombinant GAPDH by metacaspase and evaluation of protein levels in vivo, we show that upon H(2)O(2)-induced apoptosis, the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific target of metacaspase. Nitric oxide (NO) signaling, which mediates H(2)O(2)-induced apoptosis, is required for metacaspase specific GAPDH cleavage. In conclusion, in this work we identified GAPDH as the first direct yeast metacaspase substrate described so far. Although mammalian caspases and yeast metacaspase apparently have distinct target cleavage sites, GAPDH arises as a common substrate for these proteases.  相似文献   

2.
A 41,000 Mr cytosolic protein (p41) in Dictyostelium discoideum was shown to be modified by ADP-ribosylation that was not regulated by nitric oxide (NO). This endogenous ADP-riboxylation was optimal at conditions distinct from those optimal for the NO-stimulated ADP-ribosylation of p41. These two activities were also differentially sensitive to reducing agents and modified different amino acids. The addition of haemoglobin, which sequesters NO, and 3 the NO synthase inhibitors failed to block the endogenous ADP-ribosylation. P41 was purified to homogeneity. The N-terminal sequence of the purified protein was shown to be highly homologous to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both endogenous and NO-stimulated activities ADP-ribosylated three isoforms of the protein, with pI values of 6.6., 6.8 and 7.0. In each case, the isoform with pI 6.8 was preferentially modified. Experiments using purified GAPDH indicate that both the endogenous and NO-stimulated ADP-ribosylation are self-catalysed modifications.  相似文献   

3.
4.
5.
The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein -SH groups form mixed disulfides with low molecular weight thiols such as glutathione. We report here that this protein modification is not a simple response to the cellular redox state, since different oxidants lead to different patterns of protein S-thiolation. SDS-polyacrylamide gel electrophoresis shows that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the major target for modification following treatment with hydroperoxides (hydrogen peroxide or tert-butylhydroperoxide), whereas this enzyme is unaffected following cellular exposure to the thiol oxidant diamide. Further evidence that protein S-thiolation is tightly regulated in response to oxidative stress is provided by the finding that the Tdh3 GAPDH isoenzyme, and not the Tdh2 isoenzyme, is S-thiolated following exposure to H(2)O(2) in vivo, whereas both GAPDH isoenzymes are S-thiolated when H(2)O(2) is added to cell-free extracts. This indicates that cellular factors are likely to be responsible for the difference in GAPDH S-thiolation observed in vivo rather than intrinsic structural differences between the GAPDH isoenzymes. To begin to search for factors that can regulate the S-thiolation process, we investigated the role of the glutaredoxin family of oxidoreductases. We provide the first evidence that protein dethiolation in vivo is regulated by a monothiol-glutaredoxin rather than the classical glutaredoxins, which contain two active site cysteine residues. In particular, glutaredoxin 5 is required for efficient dethiolation of the Tdh3 GAPDH isoenzyme.  相似文献   

6.
The complete amino acid sequence of a high mobility group (HMG) nonhistone chromosomal protein of the ciliated protozoan Tetrahymena pyriformis (GL strain) was determined. This protein was extracted with 0.5 M HClO4 together with histone H1 (molar ratio 1:1) from the whole histone extract, then purified by gel filtration and reverse-phase HPLC. The HMG protein showed a single electrophoretic band on SDS gel electrophoresis. The amino acid sequence was determined by Edman degradation of intact protein, BrCN fragments, and their staphylococcal protease and tryptic peptides. Thus the total sequence, consisting of 99 amino acid residues and having a molecular weight of 11,626, was completely determined. Phosphorus analysis of the tryptic peptides, containing serine or threonine, showed that this HMG protein was phosphorylated at two positions, each 6-7%, and contained 0.15 mol phosphate/mol protein. This Tetrahymena HMG is rather similar to the central part of vertebrate HMG 1 in terms of the amino acid sequence and the hydropathy profile.  相似文献   

7.
Helicobacter pylori catalase   总被引:15,自引:0,他引:15  
Helicobacter pylori is the major aetiological agent of gastroduodenitis in humans. Due to the potential importance of catalase in the growth and survival of Helicobacter pylori on the surface of inflamed mucosae, we have characterized catalase from H. pylori as a prelude to further studies on the function of the enzyme in vivo. The catalase activity of H. pylori was significantly affected by the presence of blood, serum or erythrocytes in the growth medium: the greatest activity was expressed when the bacterium was grown on medium containing serum. H. pylori catalase is a tetramer with a subunit Mr of 50,000. The enzyme had a pI of 9.0-9.3, was active over a broad pH range and was stable at 56 degrees C. It was non-competitively inhibited by sodium azide, and had no detectable peroxidase activity. The Km for the purified catalase was measured as 43 +/- 3 mM-H2O2 and the V as 60 +/- 3 mmol H2O2 min-1 (mg protein)-1. The native catalase has absorption maxima at 280 nm and 405 nm with further minor shoulders or peaks at 510 nm, 535 nm and 625 nm, consistent with the presence of an iron-porphyrin prosthetic group.  相似文献   

8.
Poly(A)-containing mRNA was isolated from division synchronized populations of the ciliated protozoan, Tetrahymena pyriformis. The level of tubulin and actin mRNA at specific cell cycle stages was analyzed by hybridization to tubulin and actin cDNA probes and by gel analysis of their in vitro translation products. The pattern of fluctuation of tubulin mRNA levels was similar to that observed for the in vivo tubulin synthesis previously reported [1]. This suggests that as the cells progress through the cell cycle, tubulin synthesis is controlled at the mRNA level. There was little fluctuation of actin synthesis or actin mRNA levels during the cell cycle, which may be indicative of a different regulatory mechanism for actin than for tubulin.  相似文献   

9.
Anandamide, an endogenous cannabinoid receptor ligand, was rapidly metabolized by Tetrahymena pyriformis in vivo. Metabolic products were mainly phospholipids as well as neutral lipids, including small amounts of free arachidonic acid. Anandamide amidohydrolase activity was detected in the culture medium by the release of [3H]arachidonic acid from [3H]anandamide, in a time- and concentration-dependent manner. Kinetic experiments demonstrated that the released enzyme had an apparent K(m) of 3.7 microM and V(max) 278 pmol/min/mg protein. Amidohydrolase activity was maximal at pH 9-10, was abolished by phenylmethylsulfonyl fluoride and was Ca(2+)- and Mg(2+)-independent. Thus, T. pyriformis is capable of hydrolyzing anandamide in vivo and releasing amidohydrolase activity.  相似文献   

10.
Oxidative stress or signaling is widely implicated in apoptosis, ischemia and mitogenesis. Previously, our group reported that the hydrogen peroxide (H2O2)-dependent activation of phospholipase D2 (PLD2) in PC12 cells is involved in anti-apoptotic effect. However, the precise mechanism of PLD2 activation by H2O2 was not revealed. To find H2O2-dependent PLD2-regulating proteins, we immunoprecipitated PLD2 from PC12 cells and found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) coimmunoprecipitated with PLD2 upon H2O2 treatment. This interaction was found to be direct by in vitro reconstitution of purified GAPDH and PLD2. In vitro studies also indicated that PLD2-associated GAPDH was modified on its reactive cysteine residues. Koningic acid, an alkylator of GAPDH on catalytic cysteine residue, also increased interaction between the two proteins in vitro and enhanced PLD2 activity in PC12 cells. Blocking H2O2-dependent modification of GAPDH with 3-aminobenzamide resulted in the inhibition of the GAPDH/PLD2 interaction and attenuated H2O2-induced PLD2 activation in PC12 cells. From the results, we suggest that H2O2 modifies GAPDH on its catalytic cysteine residue not only to inactivate the dehydrogenase activity of GAPDH but also to endow GAPDH with the ability to bind PLD2 and the resulting association is involved in the regulation of PLD2 activity by H2O2.  相似文献   

11.
Recombinant Phanerochaete chrysosporium lignin peroxidase isozyme H2 (pI 4.4) was produced in insect cells infected with a genetically engineered baculovirus containing a copy of the cDNA clone lambda ML-6. The recombinant enzyme was purified to near homogeneity and is capable of oxidizing veratryl alcohol, iodide, and, to a lesser extent, guaiacol. The Km of the recombinant enzyme for veratryl alcohol and H2O2 is similar to that of the fungal enzyme. The guaiacol oxidation activity or any other activity is not dependent upon Mn2+. The purified recombinant peroxidase is glycosylated with N-linked carbohydrate(s). The recombinant lignin peroxidase eluted from an anion exchange resin similar to that of native isozyme H1 rather than H2. However, the pI of the recombinant enzymes is different from both H1 and H2 isozymes. Further characterization of native isozymes H1 and H2 from the fungal cultures revealed identical N-terminus residues. This indicates that isozymes H1 and H2 differ in post-translational modification.  相似文献   

12.
Pig blood neutrophils were briefly activated by various fatty acids and then fractionated into membrane vesicles with different NADPH oxidase activities. Treatment of these membranes with a detergent, octyl glucoside, resulted in a high yield of solubilized oxidase, which was subjected to isoelectric focusing on gels (pI 4.0-8.0). 1) A distinct band staining with NADPH-nitroblue tetrazolium focused at pI 5.0. The enzyme (pI 5.0) showed high specificity for NADPH and similar characteristics to the oxidase involved in the respiratory burst. 2) The enzyme was extracted from gel slices and analyzed. When measured promptly after its extraction, its NADPH oxidase activity was high, but there was apparent superoxide dismutase-insensitive cytochrome c reduction, probably due to direct electron transfer to the heme protein. However, it could produce superoxide anion (O2-) under some micelle conditions. 3) Therefore, the formation of the enzyme-substrate complex of yeast cytochrome c peroxidase was employed for the detection of H2O2. A fresh extract of stimulated cells catalyzed equimolar NADPH oxidation and H2O2 production of 306 and 300 nmol min-1 (mg protein)-1, respectively. The Km value of the enzyme for NADPH was 30 +/- 13 (S.D.) microM. The recovery of the extract (pI 5.0) was 19% of the total activity. 4) The enzyme extract contained 1.1-1.9 nmol of FAD/mg of protein, giving a turnover number of 300-600 min-1 in terms of O2- generation/FAD. No heme protein was found in the enzyme. The enzyme was mainly of 67-kDa molecular mass.  相似文献   

13.
The ciliated protozoan Tetrahymena pyriformis was grown in a chemostat fed with a culture of Escherichia coli overflowing from another chemostat. Densities of the protozoan and bacterial populations, mean volume of protozoan cells, yields of protozoan volumes and numbers, and filtering rates of protozoans per cell and per unit volume of biomaterial were determined at five different dilution rates. The data obtained supplement other data already available for the popular test organism T. pyriformis, and they are also comparable with data available for related ciliates.  相似文献   

14.
We purified and identified an IgE suppressor from the strawberry 'Toyonoka', based on the decrease of IgE production in in vitro immunization (IVI). Gel filtration experiment indicated that fractions in a 15-48 kDa range and <10 kDa have an IgE suppressive activity. Furthermore, the fraction in 15-48 kDa was subjected to chromatofocusing and found to have activities at isoelectric points, pI 6.0, 7.0, and 8.0-9.2. We focused on the active fractions of pI 8.0-9.2 and the purified a large amount of strawberry extracts by cation exchange resins in batch. A purified 39 kDa protein showed homology to plant glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in N-terminal amino acid sequence and had GAPDH enzymatic activity. Nucleotide sequence and deduced amino acid sequence of the obtained cDNA clone of the protein matched with the sequence of Fragaria x ananassa GAPDH in the GenBank with >98% identical nucleotides and >99% identical amino acids, respectively. The purified strawberry GAPDH suppressed total IgE production in IVI in a dose-dependent manner. From these results, we identified GAPDH as IgE suppressor in the strawberry. Our study may be applicable to the development of new methods to relieve allergic conditions using GAPDH and the screening of other functional factors for human health.  相似文献   

15.
The esterase activity of guinea-pig serum was investigated. A 3-fold purification was achieved by removing the serum albumin by Blue Sepharose CL-6B affinity chromatography. The partially purified enzyme preparation had carboxylesterase and cholinesterase activities of 1.0 and 0.22 mumol of substrate/min per mg of protein respectively. The esterases were labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated electrophoretically on sodium dodecyl sulphate/polyacrylamide gels. Two main labelled bands were detected: band I had Mr 80 000 and bound 18-19 pmol of [3H]DiPF/mg of protein, and band II had Mr 58 000 and bound 7 pmol of [3H]DiPF/mg of protein. Bis-p-nitrophenyl phosphate (a selective inhibitor of carboxylesterase) inhibited most of the labelling of bands I and II. The residual labelling (8%) of band I but not band II (4%) was removed by preincubation of partially purified enzyme preparation with neostigmine (a selective inhibitor of cholinesterase). Paraoxon totally prevented the [3H]DiPF labelling of the partially purified enzyme preparation. Isoelectrofocusing of [3H]DiPF-labelled and uninhibited partially purified enzyme preparation revealed that there were at least two separate carboxylesterases, which had pI3.9 and pI6.2, a cholinesterase enzyme (pI4.3) and an unidentified protein that reacts with [3H]DiPF and has a pI5.0. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these enzymes showed that the carboxylesterase enzymes at pI3.9 and pI6.2 corresponded to the 80 000-Mr subunit (band I) and 58 000-Mr subunit (band II). The cholinesterase enzyme was also composed of 80 000-Mr subunits (i.e. the residual labelling in band I after bis-p-nitrophenyl phosphate treatment). The unidentified protein at pI5.0 corresponded to the residual labelling in band II (Mr 58 000), which was insensitive to neostigmine and bis-p-nitrophenyl phosphate. These studies show that the carboxylesterase activity of guinea-pig serum is the result of at least two separate and distinct enzymes.  相似文献   

16.
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) has been purified to homogeneity from skeletal muscle of the newt Pleurodeles waltl (Amphibia, Urodela). The purification procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulted in a 24-fold increase in specific activity and a final yield of approximately 46%. The native protein exhibited an apparent molecular weight of approximately 146 kDa with absolute specificity for NAD(+). Only one GAPDH isoform (pI 7.57) was obtained by chromatofocusing. The enzyme is an homotetrameric protein composed of identical subunits with an apparent molecular weight of approximately 37 kDa. Monospecific polyclonal antibodies raised in rabbits against the purified newt GAPDH immunostained a single 37-kDa GAPDH band in extracts from different tissues blotted onto nitrocellulose. A 510-bp cDNA fragment that corresponds to an internal region of a GapC gene was obtained by RT-PCR amplification using degenerate primers. The deduced amino acid sequence has been used to establish the phylogenetic relationships of the Pleurodeles enzyme--the first GAPDH from an amphibian of the Caudata group studied so far--with other GAPDHs of major vertebrate phyla.  相似文献   

17.
The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.  相似文献   

18.
Nitric oxide and nitric oxide-generating agents like 3-morpholinosydnonimine (SIN-1) stimulate the mono-ADP-ribosylation of a cytosolic, 39-kDa protein in various tissues. This protein was purified from human platelet cytosol by conventional and fast protein liquid chromatography techniques. N-terminal sequence analysis identified the isolated protein as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitric oxide stimulates the auto-ADP-ribosylation of GAPDH in a time and concentration-dependent manner with maximal effects after about 60 min. Associated with ADP-ribosylation is a loss of enzymatic activity. NAD(+)-free enzyme is not inhibited by SIN-1, indicating the absolute requirement of NAD+ as the substrate of the ADP-ribosylation reaction. Inhibition of the glycolytic enzyme GAPDH may be relevant as a cytotoxic effect of NO complementary to its inhibitory actions on iron-sulfur enzymes like aconitase and electron transport proteins of the respiratory chain.  相似文献   

19.
In a series of experiments, we have determined that Legionella pneumophila will proliferate as an intracellular parasite of the ciliated holotrich Tetrahymena pyriformis in sterile tap water at 35 degrees C. After 7 days of incubation, serpentine chains of approximately 10(3) L. pneumophila cells were observed throughout the cytoplasm of the protozoan infected initially with 1 to 30 L. pneumophila cells. The overall L. pneumophila population increased from ca. 1.0 X 10(2) to ca. 5.0 X 10(4) cells per ml in the coculture within this time frame. The interactions between the protozoan and the bacterium appear to depend upon their concentrations as well as temperature of incubation. L. pneumophila did not multiply in sterile tap water alone, in suspensions of lysed T. pyriformis, or in cell-free filtrates of a T. pyriformis culture. In addition to establishing an ecological model, we found that addition of T. pyriformis to environmental specimens served as an enrichment method that improved isolation of legionella from the specimens.  相似文献   

20.
In a series of experiments, we have determined that Legionella pneumophila will proliferate as an intracellular parasite of the ciliated holotrich Tetrahymena pyriformis in sterile tap water at 35 degrees C. After 7 days of incubation, serpentine chains of approximately 10(3) L. pneumophila cells were observed throughout the cytoplasm of the protozoan infected initially with 1 to 30 L. pneumophila cells. The overall L. pneumophila population increased from ca. 1.0 X 10(2) to ca. 5.0 X 10(4) cells per ml in the coculture within this time frame. The interactions between the protozoan and the bacterium appear to depend upon their concentrations as well as temperature of incubation. L. pneumophila did not multiply in sterile tap water alone, in suspensions of lysed T. pyriformis, or in cell-free filtrates of a T. pyriformis culture. In addition to establishing an ecological model, we found that addition of T. pyriformis to environmental specimens served as an enrichment method that improved isolation of legionella from the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号