首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sodB gene encoding the only superoxide dismutase (Fe-SOD) in cells of the cyanobacterium Synechocystis sp. PCC 6803 was inactivated with gentamycin resistance aacC1 marker insertions located in the direct or reverse direction in the sodB gene. The corresponding sodB12 and sodB22 mutants are characterized by the complete absence of superoxide dismutase activity and the loss of viability upon standard photoautotrophic cultivation. Mutant cells can grow under conditions of a decreased illumination intensity and upon addition of NaHCO3 with catalase or bovine serum albumin in the growth medium. The sodB22 mutant is auxotrophic for leucine due to the polar effect of insertion into the sodB gene on the downstream leuB gene controlling leucine biosynthesis. These data suggest that Fe-SOD is very important for providing resistance of Synechocystis 6803 cells to oxidative stress and thatsodB and leuB genes are organized into a single operon.  相似文献   

2.
Biogenesis of thylakoid membranes in both chloroplasts and cyanobacteria is largely not understood today. The vesicle-inducing protein in plastids 1 (Vipp1) has been suggested to be essential for thylakoid membrane formation in Arabidopsis (Arabidopsis thaliana), as well as in the cyanobacterium Synechocystis sp. PCC 6803, although its exact physiological function remains elusive so far. Here, we report that, upon depletion of Vipp1 in Synechocystis cells, the number of thylakoid layers in individual Synechocystis cells decreased, and that, in particular, the content of photosystem I (PSI) complexes was highly diminished in thylakoids. Furthermore, separation of native photosynthetic complexes indicated that PSI trimers are destabilized and the monomeric species is enriched. Therefore, depletion of thylakoid membranes specifically affects biogenesis and/or stabilization of PSI in cyanobacteria.In chloroplasts and cyanobacteria the energy transfer between PSI and PSII is regulated in a light-dependent manner (for a recent review, see Kramer et al., 2004). The two photosystems are connected by the cytochrome b6f complex, and electron transfer from PSII via the cytochrome b6f complex to PSI is believed to be regulated by the redox state of the plastoquinol pool potentially also involving the cytochrome b6f complex (Fujita et al., 1987; Murakami and Fujita, 1993; Schneider et al., 2001, 2004; Pfannschmidt, 2003; Volkmer et al., 2007). Transfer of light energy to the two photosystems is mediated by light-harvesting complexes, and in cyanobacteria light is harvested by the soluble extramembranous phycobilisomes. The efficient energy transfer to PSI and PSII has to be balanced to synchronize the function of the two photosystems. In response to changing light intensities and qualities, energy coupling between the phycobilisomes and the photosystems changes, which allows a rapid adjustment of light absorbance by the individual photosystems. Furthermore, besides this short-term adaptation mechanism, it has been shown in many studies that on a longer term in cyanobacteria the ratio of the two photosystems changes depending on the light conditions (Manodori and Melis, 1986; Murakami and Fujita, 1993; Murakami et al., 1997). Upon shifting cyanobacterial cells from low-light to high-light growth conditions, the PSI-to-PSII ratio decreases due to selective suppression of the amount of functional PSI. In recent years, some genes have already been identified that are involved in this regulation of the photosystem stoichiometry (Hihara et al., 1998; Sonoike et al., 2001; Fujimori et al., 2005; Ozaki et al., 2007).Whereas in chloroplasts of higher plants and green algae the amounts of the two photosystems change in response to changing light conditions (Melis, 1984; Chow et al., 1990; Smith et al., 1990; Kim et al., 1993), it has already been noted a long time ago that the chloroplast ultrastructure also adapts to high-light and low-light conditions (Melis, 1984). Chloroplasts of plants grown under low light or far-red light have more thylakoid membranes than chloroplasts of plants grown under high light or blue light (Anderson et al., 1973; Lichtenthaler et al., 1981; Melis and Harvey, 1981). There appears to be a direct correlation between the chlorophyll content and the amount of thylakoids per chloroplast because light harvesting is increased by enhanced chlorophyll and thylakoid membrane content per chloroplast. Thus, chloroplasts adapt to high light both by a reduction of thylakoid membranes and by a decrease in the PSI-to-PSII ratio.Thylakoid membranes are exclusive features of both cyanobacteria and chloroplasts, and it still remains mysterious how formation of thylakoid membranes is organized. Many cellular processes, like lipid biosynthesis, membrane formation, protein synthesis in the cytoplasm and/or at a membrane, protein transport, protein translocation, and protein folding have to be organized and aligned for formation of internal thylakoid membranes. The recent observation that deletion of the vipp1 gene in Arabidopsis (Arabidopsis thaliana) results in complete loss of thylakoid membranes has indicated that Vipp1 is involved in biogenesis of thylakoid membranes. Further analysis has suggested that Vipp1 could be involved in vesicle trafficking between the inner envelope and the thylakoid membrane of chloroplasts (Kroll et al., 2001). Because of this, the protein was named Vipp1, for vesicle-inducing protein in plastids 1. Depletion of Vipp1 strongly affected the ability of cyanobacterial cells to form proper thylakoid membranes (Westphal et al., 2001) and, consequently, also in cyanobacteria Vipp1 appears to be involved in formation of thylakoid membranes. A Vipp1 depletion strain of Arabidopsis is deficient in photosynthesis, although the defect could not be assigned to a deficiency of a single photosynthetic complex, but appeared to be caused by dysfunction of the entire photosynthetic electron transfer chain (Kroll et al., 2001). Therefore, depletion of Vipp1 in Arabidopsis seems to affect thylakoid membrane formation rather than the assembly of thylakoid membrane protein complexes (Aseeva et al., 2007). However, for cyanobacteria, it is not clear yet how diminishing the amount of thylakoid membrane layers would affect the amount and stoichiometry of the two photosystems.Here, we present the generation and characterization of a Vipp1 depletion strain of the cyanobacterium Synechocystis sp. PCC 6803. Upon depletion of Vipp1, a decrease in thylakoid membrane pairs in the generated mutant strain and, furthermore, a significant decrease in active PSI centers was observed. Moreover, trimerization of PSI also appeared to be impaired in the mutant strain. These results suggest that thylakoid membrane perturbations caused by the Vipp1 depletion directly affects PSI assembly and stability in cyanobacterial thylakoid membranes.  相似文献   

3.
Galkin  A. N.  Mikheeva  L. E.  Shestakov  S. V. 《Microbiology》2003,72(1):52-57
Synechocystis sp. PCC 6803 mutants, in which one of the eukaryotic-type serine/threonine protein kinase genes pknD, pknE, pknG, and pknH was inactivated, were obtained by insertion mutagenesis. None of these mutants differed phenotypically from the wild-type strain, indicating that the pknD, pknE, pknG, and pknHgenes are not of crucial importance for the photoautotrophically grown cyanobacterium. The mutant with the inactivatedpknE gene was resistant to L-methionine-D,L-sulfoximine and especially to methylamine. The resistance was due neither to the impaired transport of these compounds nor to the inhibition of the production of toxic -glutamylmethylamide from methylamine. The data presented suggest that resistance to methylamine may be associated with alterations in the regulation of the glutamine synthetase system and that the PknE protein kinase may be involved in the regulation of nitrogen metabolism in the cyanobacterium studied.  相似文献   

4.
In cyanobacteria, increasing growth temperature decreases lipid unsaturation and the ratio of monomer/trimer photosystem I (PSI) complexes. In the present study we applied Fourier-transform infrared (FTIR) spectroscopy and lipidomic analysis to study the effects of PSI monomer/oligomer ratio on the physical properties and lipid composition of thylakoids. To enhance the presence of monomeric PSI, a Synechocystis sp. PCC6803/ΔpsaL mutant strain (PsaL) was used which, unlike both trimeric and monomeric PSI-containing wild type (WT) cells, contain only the monomeric form. The protein-to-lipid ratio remained unchanged in the mutant but, due to an increase in the lipid disorder in its thylakoids, the gel to liquid-crystalline phase transition temperature (Tm) is lower than in the WT. In thylakoid membranes of the mutant, digalactosyldiacylglycerol (DGDG), the most abundant bilayer-forming lipid is accumulated, whereas those in the WT contain more monogalactosyldiacylglycerol (MGDG), the only non-bilayer-forming lipid in cyanobacteria. In PsaL cells, the unsaturation level of sulphoquinovosyldiacylglycerol (SQDG), a regulatory anionic lipid, has increased. It seems that merely a change in the oligomerization level of a membrane protein complex (PSI), and thus the altered protein-lipid interface, can affect the lipid composition and, in addition, the whole dynamics of the membrane. Singular value decomposition (SVD) analysis has shown that in PsaL thylakoidal protein-lipid interactions are less stable than in the WT, and proteins start losing their native secondary structure at much milder lipid packing perturbations. Conclusions drawn from this system should be generally applicable for protein-lipid interactions in biological membranes.  相似文献   

5.
The properties of Slr1944 protein encoded by the slr1944 gene and participating in the metabolism of lipophilic compounds in a cyanobacterium Synechocystis were under study. Located in the periplasm, this protein comprises a conserved pentapeptide G-X-S-X-G characteristic of lipases, acetylcholinesterases, and thioesterases. An attempt to delete the gene from the cyanobacterial genome failed; this fact presumes an essential function of Slr1944 protein under the optimum growth conditions. Expression of the slr1944 gene in Escherichia coli cells demonstrated a high affinity of the product for lipophilic compounds. An enhanced slr1944 expression deprived Synechocystis cells of the ability to restore the activity of the photosynthetic electron-transport chain following photoinactivation. The authors believe that Slr1944 participates in the biogenesis of the lipophilic components of photosynthetic complexes.  相似文献   

6.
7.
The ORF sll1468 of Synechocystis sp. PCC6803 was identifiedas a gene for rß-carotene hydroxylase by functionalcomplementation in a rß-carotene-producing Escherichiacoll. The gene product of ORF sll11468 added hydroxyl groupsto the rß-ionone rings of rß-carotene (rß,rß-carotene)to form zeaxanthin (rß,rß-carotene-3,3'-diol).This newly identified rß-carotene hydroxylase doesnot show overall amino acid sequence similarity to the knownrß-carotene hydroxylases. However, it showed significantsequence similarity to rß-carotene ketolases of marinebacteria and a green alga. (Received November 29, 1997; Accepted March 6, 1998)  相似文献   

8.
The impact of hypergravity and simulated weightlessness were studied to check whether cyanobacteria perceive changes of gravity as stress. Hypergravity generated by a low-speed centrifuge increased slightly the overall activity of dehydrogenases, but the increase was the same for 90 g and 180 g. The protein pattern did not show qualitative alterations during hypergravity treatment up to 180 g. Cells of Synechocystis PCC 6803 subjected to common stressors like salt, heat, and light clearly accumulated at least four general stress proteins (25, 31, 34, and 63 kDa, respectively). Three of these proteins could also be detected after hypergravity, but in such small amounts that their occurrence could only be taken as a weak indication of stress. Low-molecular-weight stress metabolites were not synthesized in response to hypergravity, indicating that this gravity change was unable to activate the osmotic signal transduction chain. Gravity-dependent alterations were observed only during simulated weightlessness (generated by a fast-rotating clinostat). The glutamate/glutamine ratio was significantly shifted toward a higher glutamine portion. Altogether, the results may indicate that moderate changes of gravity were hardly, if ever, sensed as stress by cyanobacteria. Received: 20 May 1997 / Accepted: 25 June 1997  相似文献   

9.
Cyanobacteria are photoautotrophic organisms capable of oxygen-producingphotosynthesis similar to that in eukaryotic algae and plants,and because of this, they have been used as model organismsfor the study of the mechanism and regulation of oxygen-producingphotosynthesis. To understand the entire genetic system in cyanobacteria,the nucleotide sequence of the entire genome of the unicellularcyanobacterium Synechocystis sp. PCC6803 has been determined.The total length of the circular genome is 3,573,470 bp, witha GC content of 47.7%. A total of 3,168 potential protein codinggenes were assigned. Of these, 145 (4.6%) were identical toreported genes, and 1,259 (39.6%) and 342 (10.8%) showed similarityto reported and hypothetical genes, respectively. The remaining1,422 (45.0%) showed no apparent similarity to any genes registeredin the databases. Classification of the genes by their biologicalfunction and comparison of the gene complement with those ofother organisms have revealed a variety of features of the geneticinformation characteristic of a photoautotrophic organism. Thesequence data, as well as other information on the Synechocystisgenome, is presented in CyanoBase on WWW [http://www.kazusa.or.jp/cyano/]. (Received July 24, 1997; Accepted September 17, 1997)  相似文献   

10.
Synechocystis sp. PCC 6803 is the most popular cyanobacterial strain, serving as a standard in the research fields of photosynthesis, stress response, metabolism and so on. A glucose-tolerant (GT) derivative of this strain was used for genome sequencing at Kazusa DNA Research Institute in 1996, which established a hallmark in the study of cyanobacteria. However, apparent differences in sequences deviating from the database have been noticed among different strain stocks. For this reason, we analysed the genomic sequence of another GT strain (GT-S) by 454 and partial Sanger sequencing. We found 22 putative single nucleotide polymorphisms (SNPs) in comparison to the published sequence of the Kazusa strain. However, Sanger sequencing of 36 direct PCR products of the Kazusa strains stored in small aliquots resulted in their identity with the GT-S sequence at 21 of the 22 sites, excluding the possibility of their being SNPs. In addition, we were able to combine five split open reading frames present in the database sequence, and to remove the C-terminus of an ORF. Aside from these, two of the Insertion Sequence elements were not present in the GT-S strain. We have thus become able to provide an accurate genomic sequence of Synechocystis sp. PCC 6803 for future studies on this important cyanobacterial strain.  相似文献   

11.
Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII] and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.  相似文献   

12.
PCR扩增了蓝细菌集胞藻6803(Synechocystis sp.PCC6803)的agp基因(编码ADP-葡萄糖焦磷酸羧化酶),进一步以pUC118为载体将其克隆到大肠杆菌中,构建了pUCA质粒。通过DNA体外重组,以红霉素抗性基因部分取代agp基因片段,构建了既含agp基因上游及下游序列、又携带选择性标记-红霉素抗性的pUCAE质粒。该质粒转化野生型集胞藻6803细胞,获得了能在含红霉素的培养基上正常生长的agp基因缺失突变株。对该突变株基因组DNA进行PCR扩增,验邝了其基因结构的正确性。突变株细胞生长速度较野生型细胞快,胞内的叶绿素含量比野生型细胞高,表明该突变株具有较高的光合效率。在突变株中未检测到糖原的存在,进一步从生理水平上验证了突变株构建的正确性。  相似文献   

13.
14.
Nine compounds were isolated from Elsholtzia blanda (Benth.) Benth. Their structures were identified with spectral and chemical methods as follows: 5,6-dihydro-6-styry-2-pyrone (1), friedelin (2), 4-hydroxy-3-methoxystyrene (3), 5,2′-dimethoxy-6,7-methylene dioxyflavanone (4), 5-hydroxy-7-methoxy-6-O-[α- L -rhamnopyranosyl(1→2)-β- D -fucopyranosyl] flavone glycoside (5), 5,5′-dihydroxy-7-acetoxyl-6,8,3″,3″-tetramethylpyran (3′,4′) flavone (6), 5,5′-dihydroxy-7-(α-methyl) butyroxyl-6,8,3″,3″-tetramethylpyran (3′,4′) flavone (7), 5,5′-dihydroxy-6,7-methylenedioxy-8,3″,3″-trimethylpyran (3′,4′) flavone (8), glucosyringic acid (9). Among them, 6, 7 and 8 are new compounds, named as sifanghaoine Ⅰ,Ⅱ and Ⅲ, respectively.  相似文献   

15.
We have taken a genetic approach to eliminating the presence of photosystem I (PSI) in site-directed mutants of photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. By selecting under light-activated heterotrophic conditions, we have inactivated the psaA-psaB operon encoding the PSI reaction center proteins in cells containing deletions of the three psbA genes. We have also introduced deletions into both copies of psbD in a strain containing a mutation that inactivates psaA (ADK9). These strains, designated D1-/PSI- and D2-/PSI-, may serve as recipient strains for the incorporation of site-directed mutations in either psbA2 or psbD1. The characterization of these cells, which lack both PSI and PSII, is described.  相似文献   

16.
17.
An insertional transposon mutation in the sll0606 gene was found to lead to a loss of photoautotrophy but not photoheterotrophy in the cyanobacterium Synechocystis sp. PCC 6803. Complementation analysis of this mutant (Tsll0606) indicated that an intact sll0606 gene could fully restore photoautotrophic growth. Gene organization in the vicinity of sll0606 indicates that it is not contained in an operon. No electron transport activity was detected in Tsll0606 using water as an electron donor and 2,6-dichlorobenzoquinone as an electron acceptor, indicating that Photosystem II (PS II) was defective. Electron transport activity using dichlorophenol indolephenol plus ascorbate as an electron donor to methyl viologen, however, was the same as observed in the control strain. This indicated that electron flow through Photosystem I was normal. Fluorescence induction and decay parameters verified that Photosystem II was highly compromised. The quantum yield for energy trapping by Photosystem II (FV/FM) in the mutant was less than 10% of that observed in the control strain. The small variable fluorescence yield observed after a single saturating flash exhibited aberrant QA reoxidation kinetics that were insensitive to dichloromethylurea. Immunological analysis indicated that whereas the D2 and CP47 proteins were modestly affected, the D1 and CP43 components were dramatically reduced. Analysis of two-dimensional blue native/lithium dodecyl sulfate-polyacrylamide gels indicated that no intact PS II monomer or dimers were observed in the mutant. The CP43-less PS II monomer did accumulate to detectable levels. Our results indicate that the Sll0606 protein is required for the assembly/stability of a functionally competent Photosystem II.  相似文献   

18.
19.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl chlorophyll - BChl bacteriochlorophyll - PS Photosystem - S. 6803 Synechocystis sp. PCC 6803 - PGP potassium glycerol phosphate  相似文献   

20.
An accurate physical map of the genome of a cyanobacterium,Synechocystis sp. strain PCC6803, was constructed on the basisof restriction and linking clone analysis. The genome contained6 recognition sites for AscI, 25 sites for MluI, and 31 sitesfor SplI, and the entire genome size was estimated to be 3.6Mb. Sixteen genes or gene clusters, including those involvedin the photosynthetic systems, were localized on the physicalmapof the genome by hybridization. In the course of the above analysis,two extra chromosomal units with approximate sizes of 110 kband 125 kb were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号