首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cDNA fragments 466–966 and 878–1088 coding for the precursor M (prM) protein and polypeptide M31–75-E1–30 of the Russian strain LEIV-Vlg99-27889-human of the West Nile virus (WNV) were synthesized and cloned. The corresponding prM and M31–75-E1–30 recombinant polypeptides were purified by affinity chromatography. The prM polypeptide interacted with a polyclonal serum against WNV in ELISA and immunoblotting, demonstrating the immunochemical similarity of the recombinant polypeptide and the native WNV prM protein. Six species-specific monoclonal antibodies (mAbs) against the prM recombinant polypeptide recognized at least four epitopes on the recombinant polypeptides. In addition, mAb 7D11 displayed a virus-neutralizing activity. The patterns of mAb interactions with the prM, M31–75-E1–30, E1–180, and E260–466 recombinant polypeptides revealed cross-reacting epitopes in regions 260–466 of the E protein and 31–75 of the M31–75-E1–30 polypeptide and the WNV prM protein. A spatial model revealed structural similarity of the C-terminal regions of the E and M proteins of WNV, supporting the results of immunochemical experiments. Based on virus neutralization by mAb 7D11, which recognized an epitope mapping to region 31–75 of the WNV M protein, an important function in virus penetration into the cell was assumed for the C-terminal region of the M protein.  相似文献   

2.
Langat (LGT) virus M protein has been generated in a recombinant system. Antiserum raised against the LGT virus M protein neutralizes tick-borne encephalitis serocomplex flaviviruses but not mosquito-borne flaviviruses, indicating that the M protein is exposed on the surface of virions. The antiserum recognizes intracellular LGT virus prM/M and binds to prM and M in Western blots of whole-cell lysates and purified virus, respectively. These data suggest that the prM and M proteins are structurally similar under native conditions and support the hypothesis that the "pr" portion of prM facilitates proper folding of the M protein for expression on the virion surface.  相似文献   

3.
Fragments cDNA (nt 935-1475, 1091-1310, 935-1193) encoding N-terminal part of protein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human were obtained and cloned. Recombinant polypeptides of glycoprotein E (E1-86, E53-126, E1-180) of the WNV with corresponding amino acid sequence to the cloned fragments of cDNA and modeling the epitopes of domains I and II of surface glycoprotein E were purified by affinity chromatography. Twelve types of monoclonal antibodies (MAbs) created in our laboratory against recombinant polypeptide E1-180 interact with glycoprotein E of the WNV as results of Western blot and ELISA that is demonstrating an similarity of chemical structure of short recombinant polypeptides and corresponding amino acid sequence regions of WNV protein E. Analysis of interactions of MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus let us reveal no less than six epitopes within domains I and II of glycoprotein E of the WNV. No less than seven types of MAbs to 86-126 aa region of the domain II were found where located peptide providing fusion of virus--cell membranes (98-110 aa). The epitope for anti-receptor MAbs 10H10 within 53-86 aa region of domain II of protein E of the WNV was mapped and it shows that the fusion peptide and co-receptor of protein E for cellular laminin-binding protein (LBP) are spatial nearness. X-ray model of protein E let us suppose that bc-loop (73-89 aa) of domain II interacts with LBP and together with cd-loop (fusion peptide) determines an initial stages of penetration virions into cell.  相似文献   

4.
5.
West Nile virus (WNV) is a widespread global pathogen that results in significant morbidity and mortality. Data from animal models provide evidence of persistent renal and neurological infection from WNV; however, the possibility of persistent infection in humans and long-term neurological and renal outcomes related to viral persistence remain largely unknown. In this paper, we provide a review of the literature related to persistent infection in parallel with the findings from cohorts of patients with a history of WNV infection. The next steps for enhancing our understanding of WNV as a persistent pathogen are discussed.  相似文献   

6.
West Nile virus core protein; tetramer structure and ribbon formation   总被引:8,自引:0,他引:8  
We have determined the crystal structure of the core (C) protein from the Kunjin subtype of West Nile virus (WNV), closely related to the NY99 strain of WNV, currently a major health threat in the U.S. WNV is a member of the Flaviviridae family of enveloped RNA viruses that contains many important human pathogens. The C protein is associated with the RNA genome and forms the internal core which is surrounded by the envelope in the virion. The C protein structure contains four alpha helices and forms dimers that are organized into tetramers. The tetramers form extended filamentous ribbons resembling the stacked alpha helices seen in HEAT protein structures.  相似文献   

7.
The immune response against viral infection relies on the early production of cytokines that induce an antiviral state and trigger the activation of immune cells. This response is initiated by the recognition of virus-associated molecular patterns such as dsRNA, a viral replication intermediate recognized by TLR3 and certain RNA helicases. Infection with West Nile virus (WNV) can lead to lethal encephalitis in susceptible individuals and constitutes an emerging health threat. In this study, we report that WNV envelope protein (WNV-E) specifically blocks the production of antiviral and proinflammatory cytokines induced by dsRNA in murine macrophages. This immunosuppressive effect was not dependent on TLR3 or its adaptor molecule Trif. Instead, our experiments show that WNV-E acts at the level of receptor-interacting protein 1. Our results also indicate that WNV-E requires a certain glycosylation pattern, specifically that of dipteran cells, to inhibit dsRNA-induced cytokine production. In conclusion, these data show that the major structural protein of WNV impairs the innate immune response and suggest that WNV exploits differential vector/host E glycosylation profiles to evade antiviral mechanisms.  相似文献   

8.
Migratory birds and West Nile virus   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
The domain III of the West Nile virus (WNV) envelope glycoprotein (E) was shown to serve as virus attachment domain to the cellular receptor, and neutralizing Abs have been mapped to this specific domain. In this study, domain III of the WNV E protein (WNV E DIII) was expressed as a recombinant protein and its potential as a subunit vaccine candidate was evaluated in BALB/C mice. Immunization of WNV E DIII protein with oligodeoxynucleotides (CpG-DNA) adjuvant by i.p. injection was conducted over a period of 3 wk. The immunized mice generated high titer of WNV-neutralizing Abs. Murine Ab against WNV E DIII protein was also capable of neutralizing Japanese encephalitis virus. The IgG isotypes generated were predominantly IgG2a in the murine sera against the recombinant protein. Splenocyte cultures from the mice coadministrated with WNV E DIII protein and CpG secreted large amounts of IFN-gamma and IL-2 and showed proliferation of T cells in the presence of WNV E DIII protein. Overall, this study highlighted that recombinant WNV E DIII protein delivered in combination with CpG adjuvant to mice generated a Th1 immune response type against WNV and can serve as a potential vaccine to prevent WNV infection.  相似文献   

12.
The structure of immature West Nile virus particles, propagated in the presence of ammonium chloride to block virus maturation in the low-pH environment of the trans-Golgi network, was determined by cryo-electron microscopy (cryo-EM). The structure of these particles was similar to that of immature West Nile virus particles found as a minor component of mature virus samples (naturally occurring immature particles [NOIPs]). The structures of mature infectious flaviviruses are radically different from those of the immature particles. The similarity of the ammonium chloride-treated particles and NOIPs suggests either that the NOIPs have not undergone any conformational change during maturation or that the conformational change is reversible. Comparison with the cryo-EM reconstruction of immature dengue virus established the locations of the N-linked glycosylation sites of these viruses, verifying the interpretation of the reconstructions of the immature flaviviruses.  相似文献   

13.
14.
The clinical manifestations of West Nile virus (WNV), a member of the Flavivirus family, include febrile illness, sporadic encephalitis, and paralysis. The capsid (Cp) of WNV is thought to participate in these processes by inducing apoptosis through mitochondrial dysfunction and activation of caspase-9 and caspase-3. To further identify the molecular mechanism of the WNV capsid protein (WNVCp), yeast two-hybrid assays were employed using WNV-Cp as bait. Jab1, the fifth subunit of the COP9 signalosome, was subsequently identified as a molecule that interacts with WNVCp. Immunoprecipitation and glutathione S-transferase pulldown assays confirmed that direct interaction could occur between WNVCp and Jab1. Immunofluorescence microscopy demonstrated that the overexpressed WNVCp, which localized to the nucleolus, was translocated to the cytoplasm upon its co-expression with Jab1. When treated with leptomycin B, Jab1-facilitated nuclear exclusion of WNVCp was prevented, which indicated that the CRM1 complex is required for Jab1-facilitated nuclear export of WNVCp. Moreover, Jab1 promoted the degradation of WNVCp in a proteasome-dependent way. Consistent with this, WNVCp-mediated cell cycle arrest at the G(2) phase in H1299 was prevented by exogenous Jab1. Finally, an analysis of WNVCp deletion mutants indicated that the first 15 amino acids were required for interaction with Jab1. Furthermore, the double-point mutant of the WNVCp, P5A/P8A, was incapable of binding to Jab1. These results indicate that Jab1 has a potential protective effect against pathogenic WNVCp and might provide a novel target site for the treatment of disease caused by WNV.  相似文献   

15.
西尼罗病毒研究进展   总被引:1,自引:0,他引:1  
任军 《生命科学》2005,17(5):445-448
西尼罗病毒(West Nile virus,WNV)属黄病毒科,为正单链RNA病毒。它在人类中的感染导致以发热为主要症状的传染性疾病,主要由蚊虫叮咬传播。自20世纪50年代首例报告西尼罗病毒自然感染所致脑炎后的几十年内,西尼罗病毒脑炎在欧洲及中亚地区散在、小规模流行。西尼罗病毒脑炎于1999年在美国的爆发及随后几年在北美的流行引起了极大的关注。这次爆发流行中新出现的种种迹象,如其中间宿主——野生鸟类的大量死亡,人类感染者中中枢神经系统受损比例的增高等,提示近期的遗传变异已使西尼罗病毒感染的病理学与流行病学发生了较显著的变化。另外,随着感染的流行,蚊虫叮咬以外的传播途径,如输血、器官移植、母婴传播等日益受到人们重视。同时,人们对阻止疫情所急需的疫苗的研制也在进行之中。本文就近几年来对西尼罗病毒的感染、免疫与流行病学方面的研究进展进行了综述。  相似文献   

16.
West Nile (WN) virus is a mosquito-borne flavivirus that emerged in the United States in 1999 and can cause fatal encephalitis. Envelope (E) protein cDNA from a WN virus isolate recovered from Culex pipiens in Connecticut was expressed in Escherichia coli. The recombinant E protein was purified and used as Ag in immunoblot assays and immunization experiments. Patients with WN virus infection had Abs that recognized the recombinant E protein. C3H/HeN mice immunized with E protein developed E protein Abs and were protected from infection with WN virus. Passive administration of E protein antisera was also sufficient to afford immunity. E protein is a candidate vaccine to prevent WN virus infection.  相似文献   

17.
ELISA and Western blot immunochemical data attest an effective and highly specific interaction of the surface glycoprotein E domain II (DII) of the tick born encephalitis and Dengue viruses with the laminin binding protein (LBP). Based on a highly conservative structure of the DII in different flaviviruses we propose a similarly effective interaction between the LBP and the DII of the surface glycoprotein E of the West Nile virus. We report the results of studies of this interaction by immunochemical and single molecule force spectroscopy methods. The specific binding between these species is confirmed by both methods.  相似文献   

18.
West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 10(5) TCID(50) Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines.  相似文献   

19.
West Nile virus (WNV) is a re-emerging pathogen responsible for fatal outbreaks of meningoencephalitis in humans. Recent research using a mouse model of infection has indicated that specific chemokines and chemokine receptors help mediate the host response to WNV acting by at least three mechanisms: control of early neutrophil recruitment to the infection site (Cxcr2), control of monocytosis in blood (Ccr2) and control of leukocyte movement from blood to brain (Cxcr4, Cxcr3, Cxcl10 and possibly Ccr5). CCR5 also appears to be important in human infection, since individuals genetically deficient in this receptor have increased risk of symptomatic disease once infected. These findings provide detailed insight into non-redundant chemokine roles in organ-specific leukocyte recruitment during infection, and emphasize the importance of the balance between pathogen control and immunopathology in determining overall clinical outcome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号