首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peripheral membrane proteins utilize a variety of mechanisms to attach tightly, and often reversibly, to cellular membranes. The covalent lipid modifications, myristoylation and palmitoylation, are critical for plasma membrane localization of heterotrimeric G protein alpha subunits. For alpha(s) and alpha(q), two subunits that are palmitoylated but not myristoylated, we examined the importance of interacting with the G protein betagamma dimer for their proper plasma membrane localization and palmitoylation. Conserved alpha subunit N-terminal amino acids predicted to mediate binding to betagamma were mutated to create a series of betagamma binding region mutants expressed in HEK293 cells. These alpha(s) and alpha(q) mutants were found in soluble rather than particulate fractions, and they no longer localized to plasma membranes as demonstrated by immunofluorescence microscopy. The mutations also inhibited incorporation of radiolabeled palmitate into the proteins and abrogated their signaling ability. Additional alpha(q) mutants, which contain these mutations but are modified by both myristate and palmitate, retained their localization to plasma membranes and ability to undergo palmitoylation. These findings identify binding to betagamma as a critical membrane attachment signal for alpha(s) and alpha(q) and as a prerequisite for their palmitoylation, while myristoylation can restore membrane localization and palmitoylation of betagamma binding-deficient alpha(q) subunits.  相似文献   

2.
Heterotrimeric G proteins typically localize at the cytoplasmic face of the plasma membrane where they interact with heptahelical receptors. For G protein alpha subunits, multiple membrane targeting signals, including myristoylation, palmitoylation, and interaction with betagamma subunits, facilitate membrane localization. Here we show that an additional membrane targeting signal, an N-terminal polybasic region, plays a key role in plasma membrane localization of non-myristoylated alpha subunits. Mutations of N-terminal basic residues in alpha(s) and alpha(q) caused defects in plasma membrane localization, as assessed through immunofluorescence microscopy and biochemical fractionations. In alpha(s), mutation of four basic residues to glutamine was sufficient to cause a defect, whereas in alpha(q) a defect in membrane localization was not observed unless nine basic residues were mutated to glutamine or if three basic residues were mutated to glutamic acid. betagamma co-expression only partially rescued the membrane localization defects; thus, the polybasic region is also important in the context of the heterotrimer. Introduction of a site for myristoylation into the polybasic mutants of alpha(s) and alpha(q) recovered strong plasma membrane localization, indicating that myristoylation and polybasic motifs may have complementary roles as membrane targeting signals. Loss of plasma membrane localization coincided with defects in palmitoylation. The polybasic mutants of alpha(s) and alpha(q) were still capable of assuming activated conformations and stimulating second messenger production, as demonstrated through GST-RGS4 interaction assays, cAMP assays, and inositol phosphate assays. Electrostatic interactions with membrane lipids have been found to be important in plasma membrane targeting of many proteins, and these results provide evidence that basic residues play a role in localization of G protein alpha subunits.  相似文献   

3.
Nascent beta and gamma subunits of heterotrimeric G proteins need to be targeted to the cytoplasmic face of the plasma membrane (PM) in order to transmit signals. We show that beta(1)gamma(2) is poorly targeted to the PM and predominantly localized to endoplasmic reticulum (ER) membranes when expressed in HEK293 cells, but co-expression of a G protein alpha subunit allows strong PM localization of the beta(1)gamma(2). Furthermore, C-terminal isoprenylation of the gamma subunit is necessary but not sufficient for PM localization of beta(1)gamma(2). Isoprenylation of gamma(2) and localization of beta(1)gamma(2) to the ER occurs independently of alpha expression. Efficient PM localization of beta(1)gamma(2) in the absence of co-expressed alpha is observed when a site for palmitoylation, a putative second membrane targeting signal, is introduced into gamma(2). When a mutant of alpha(s) is targeted to mitochondria, beta(1)gamma(2) follows, consistent with an important role for alpha in promoting subcellular localization of betagamma. Furthermore, we directly demonstrate the requirement for alpha by showing that disruption of heterotrimer formation by the introduction of alpha binding mutations into beta(1) impedes PM targeting of beta(1)gamma(2). The results indicate that two membrane targeting signals, lipid modification and alpha binding, make concerted contributions to PM localization of betagamma.  相似文献   

4.
To investigate how G protein alpha subunit localization is regulated under basal and activated conditions, we inserted green fluorescent protein (GFP) into an internal loop of Galpha(q). alpha(q)-GFP stimulates phospholipase C in response to activated receptors and inhibits betagamma-dependent activation of basal G protein-gated inwardly rectifying K(+) currents as effectively as alpha(q) does. Association of alpha(q)-GFP with the plasma membrane is reduced by mutational activation and eliminated by mutation of the alpha(q) palmitoylation sites, suggesting that alpha(q) must be in the inactive, palmitoylated state to be targeted to this location. We tested the effects of activation by receptors and by AlF(4)(-) on the localization of alpha(q)-GFP in cells expressing both alpha(q)-GFP and a protein kinase Cgamma-red fluorescent protein fusion that translocates to the plasma membrane in response to activation of G(q). In cells that clearly exhibit protein kinase Cgamma-red fluorescent protein translocation responses, relocalization of alpha(q)-GFP is not observed. Thus, under conditions associated with palmitate turnover and betagamma dissociation, alpha(q)-GFP remains associated with the plasma membrane. These results suggest that upon reaching the plasma membrane alpha(q) receives an anchoring signal in addition to palmitoylation and association with betagamma, or that during activation, one or both of these factors continues to retain alpha(q) in this location.  相似文献   

5.
To investigate the role of subcellular localization in regulating the specificity of G protein betagamma signaling, we have applied the strategy of bimolecular fluorescence complementation (BiFC) to visualize betagamma dimers in vivo. We fused an amino-terminal yellow fluorescent protein fragment to beta and a carboxyl-terminal yellow fluorescent protein fragment to gamma. When expressed together, these two proteins produced a fluorescent signal in human embryonic kidney 293 cells that was not obtained with either subunit alone. Fluorescence was dependent on betagamma assembly in that it was not obtained using beta2 and gamma1, which do not form a functional dimer. In addition to assembly, BiFC betagamma complexes were functional as demonstrated by more specific plasma membrane labeling than was obtained with individually tagged fluorescent beta and gamma subunits and by their abilities to potentiate activation of adenylyl cyclase by alpha(s) in COS-7 cells. To investigate isoform-dependent targeting specificity, the localization patterns of dimers formed by pair-wise combinations of three different beta subunits with three different gamma subunits were compared. BiFC betagamma complexes containing either beta1 or beta2 localized to the plasma membrane, whereas those containing beta5 accumulated in the cytosol or on intracellular membranes. These results indicate that the beta subunit can direct trafficking of the gamma subunit. Taken together with previous observations, these results show that the G protein alpha, beta, and gamma subunits all play roles in targeting each other. This method of specifically visualizing betagamma dimers will have many applications in sorting out roles for particular betagamma complexes in a wide variety of cell types.  相似文献   

6.
The G protein subunit, betagamma, plays an important role in targeting alpha subunits to the plasma membrane and is essential for binding and activation of the heterotrimer by heptahelical receptors. Mutation of residues in the N-terminal alpha-helix of alpha s and alpha q that contact betagamma in the crystal structure of alpha i reduces binding between alpha and betagamma, inhibits plasma membrane targeting and palmitoylation of the alpha subunit, and results in G proteins that fail to couple receptor activation to stimulation of effector. Overexpression of betagamma can recover this loss of signaling through Gs but not Gq. In fact, a single mutation (I25A) in alpha q can block alpha q-mediated generation of inositol phosphates. Function is not recovered by betagamma overexpression nor myristoylation directed plasma membrane localization. Introduction of a Q209L activating mutation with I25A results in a constitutively active alpha q as expected, but surprisingly a R183C activating mutation does not result in constitutive activity when present with I25A. Examination of binding between alpha and betagamma via a pull down assay shows that the N-terminal betagamma-binding mutations inhibit alpha-betagamma binding significantly more than the R183C or Q209L activating mutations do. Moreover, introduction of the I25A mutation into alpha q RC disrupts co-immunoprecipitation with PLCbeta1. Taken together, results presented here suggest that alpha-betagamma binding is necessary at a point downstream from receptor activation of the heterotrimeric G protein for signal transduction by alpha q.  相似文献   

7.
Chakravorty D  Botella JR 《Gene》2007,393(1-2):163-170
Heterotrimeric G proteins (G-proteins) are a diverse class of signal transducing proteins which have been implicated in a variety of important roles in plants. When G-proteins are activated, they dissociate into two functional subunits (alpha and the betagamma dimer) that effectively relay the signal to a multitude of effectors. In animal systems, the betagamma dimer is anchored to the plasma membrane by a prenyl group present in the gamma subunit and membrane localization has proven vital for heterotrimer function. A semi-dominant negative strategy was designed aiming to disrupt heterotrimer function in Arabidopsis thaliana (ecotype Columbia) plants by over-expressing a truncated gamma subunit lacking the isoprenylation motif (gamma()). Northern analysis shows that the levels of expression of the mutant gamma subunit in several transgenic lines (35S-gamma()) are orders of magnitude higher than that of the native subunits. In-depth characterization of the 35S-gamma() lines has been carried out, specifically focusing on a number of developmental characteristics and responses to several stimuli previously shown to be affected in alpha- and beta-deficient mutants. In all cases, the transgenic lines expressing the mutant gamma subunit behave in the same way as the alpha- and/or the beta-deficient mutants, albeit with reduced severity of the phenotype. Our data indicates that signaling from both functional subunits, alpha and the beta/gamma dimer, is disrupted in the transgenic plants. Even though physical association of the subunits has been previously reported, our research provides evidence of the functional association of alpha and beta with the gamma subunits in Arabidopsis, while also suggesting that plasma membrane localization may be critical for function of plant heterotrimeric G proteins.  相似文献   

8.
In fibroblasts, the G protein alpha subunits Galpha(12) and Galpha(13) stimulate Rho-dependent stress fiber formation and focal adhesion assembly, whereas G protein betagamma subunits instead exert a disruptive influence. We show here that the latter can, however, stimulate the formation of stress fibers and focal adhesions in epithelial-like HeLa cells. Transient expression of beta(1) with gamma(2), gamma(5), gamma(7), and gamma(12) in quiescent HeLa cells induced stress fiber formation and focal adhesion assembly as did expression of the constitutively active Galpha(12). Co-expression of betagamma with Galpha(i2) and the C-terminal fragment of the beta-adrenergic receptor kinase, both of which are known to bind and sequester free betagamma, blocked betagamma-induced stress fiber and focal adhesion formation. Inhibition was also noted with co-expression of a dominant negative mutant of Rho. Botulinum C3 exoenzyme, which ADP-ribosylates and inactivates Rho, and a Rho-associated protein kinase inhibitor, Y-27632, similarly inhibited betagamma-induced stress fiber and focal adhesion assembly. These results indicate that G protein betagamma subunits regulate Rho-dependent actin polymerization in HeLa cells.  相似文献   

9.
Many of the alpha subunits of heterotrimeric GTP-binding regulatory proteins (G proteins) are palmitoylated, a modification proposed to play a key role in the stable anchorage of the subunits to the plasma membrane. Palmitoylation of alpha subunits from the G(i) family is preceded by N-myristoylation, which alone or together with betagamma probably supports a reversible interaction of the alpha subunit with membrane as a prerequisite to the eventual incorporation of palmitate. Previous studies have not addressed, however, the question of whether membrane association alone, carried out through N-myristoylation, interaction with betagamma, or other events, is sufficient for palmitoylation. We report here for alpha(o) that it is not. We found that N-myristoylation is required for palmitoylation at least in part because it supports events subsequent to membrane attachment. Mutants of alpha(o) designed to target the subunit to membrane without an N-myristoyl group are unable to be palmitoylated as evaluated by incorporation of [(3)H]palmitate. Mutants of alpha(o) unable to interact normally with betagamma yet still attach to membrane demonstrate that betagamma, in contrast, is not required for palmitoylation. betagamma becomes necessary, however, when the N-myristoyl group is absent. Our results suggest that N-myristoylation and betagamma, while almost certainly relevant to the reversible interaction of alpha(o) with membrane, also play at least partly overlapping, post-anchorage roles in palmitoylation.  相似文献   

10.
《The Journal of cell biology》1996,133(5):1027-1040
Heterotrimeric G proteins are well known to be involved in signaling via plasma membrane (PM) receptors. Recent data indicate that heterotrimeric G proteins are also present on intracellular membranes and may regulate vesicular transport along the exocytic pathway. We have used subcellular fractionation and immunocytochemical localization to investigate the distribution of G alpha and G beta gamma subunits in the rat exocrine pancreas which is highly specialized for protein secretion. We show that G alpha s, G alpha i3 and G alpha q/11 are present in Golgi fractions which are > 95% devoid of PM. Removal of residual PM by absorption on wheat germ agglutinin (WGA) did not deplete G alpha subunits. G alpha s was largely restricted to TGN- enriched fractions by immunoblotting, whereas G alpha i3 and G alpha q/11 were broadly distributed across Golgi fractions. G alpha s did not colocalize with TGN38 or caveolin, suggesting that G alpha s is associated with a distinct population of membranes. G beta subunits were barely detectable in purified Golgi fractions. By immunofluorescence and immunogold labeling, G beta subunits were detected on PM but not on Golgi membranes, whereas G alpha s and G alpha i3 were readily detected on both Golgi and PM. G alpha and G beta subunits were not found on membranes of zymogen granules. These data indicate that G alpha s, G alpha q/11, and G alpha i3 associate with Golgi membranes independent of G beta subunits and have distinctive distributions within the Golgi stack. G beta subunits are thought to lock G alpha in the GDP-bound form, prevent it from activating its effector, and assist in anchoring it to the PM. Therefore the presence of free G alpha subunits on Golgi membranes has several important functional implications: it suggests that G alpha subunits associated with Golgi membranes are in the active, GTP-bound form or are bound to some other unidentified protein(s) which can substitute for G beta gamma subunits. It further implies that G alpha subunits are tethered to Golgi membranes by posttranslational modifications (e.g., palmitoylation) or by binding to another protein(s).  相似文献   

11.
Takida S  Wedegaertner PB 《FEBS letters》2004,567(2-3):209-213
Heterotrimeric G proteins are lipid-modified, peripheral membrane proteins that function at the inner surface of the plasma membrane (PM) to relay signals from cell-surface receptors to downstream effectors. Cellular trafficking pathways that direct nascent G proteins to the PM are poorly defined. In this report, we test the proposal that G proteins utilize the classical exocytic pathway for PM targeting. PM localization of the G protein heterotrimers alpha s beta 1 gamma 2 and alpha q beta 1 gamma 2 occurred independently of treatment of cells with Brefeldin A, which disrupts the Golgi, or expression of Sar1 mutants, which prevent the formation of endoplasmic reticulum to Golgi transport vesicles. Moreover, the palmitoylation of alpha q was unaffected by Brefeldin A treatment, even though the palmitoylation of SNAP25 was blocked by Brefeldin A. Non-palmitoylated mutants of alpha s and alpha q failed to stably bind to beta gamma and displayed a dispersed cytoplasmic localization when co-expressed with beta gamma. These findings support a refined model of the PM trafficking pathway of G proteins, involving assembly of the heterotrimer at the endoplasmic reticulum and transport to the PM independently of the Golgi.  相似文献   

12.
Plasma membrane targeting of G protein alpha (Galpha) subunits is essential for competent receptor-to-G protein signaling. Many Galpha are tethered to the plasma membrane by covalent lipid modifications at their N terminus. Additionally, it is hypothesized that Gq family members (Gqalpha,G11alpha,G14alpha, and G16alpha) in particular utilize a polybasic sequence of amino acids in their N terminus to promote membrane attachment and protein palmitoylation. However, this hypothesis has not been tested, and nothing is known about other mechanisms that control subcellular localization and signaling properties of G14alpha and G16alpha. Here we report critical biochemical factors that mediate membrane attachment and signaling function of G14alpha and G16alpha. We find that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences in their N termini and that the polycysteine sequence along with the adjacent polybasic region are both important for G16alpha-mediated signaling at the plasma membrane. Surprisingly, the isolated N termini of G14alpha and G16alpha expressed as peptides fused to enhanced green fluorescent protein each exhibit differential requirements for palmitoylation and membrane targeting; individual cysteine residues, but not the polybasic regions, determine lipid modification and subcellular localization. However, full-length G16alpha, more so than G14alpha, displays a functional dependence on single cysteines for membrane localization and activity, and its full signaling potential depends on the integrity of the polybasic sequence. Together, these findings indicate that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences, and that the adjacent polybasic domain is not required for Galpha palmitoylation but is important for localization and functional activity of heterotrimeric G proteins.  相似文献   

13.
Ggamma11 is an unusual guanine nucleotide-binding regulatory protein (G protein) subunit. To study the effect of different Gbeta-binding partners on gamma11 function, four recombinant betagamma dimers, beta1gamma2, beta4gamma2, beta1gamma11, and beta4gamma11, were characterized in a receptor reconstitution assay with the G(q)-linked M1 muscarinic and the G(i1)-linked A1 adenosine receptors. The beta4gamma11 dimer was up to 30-fold less efficient than beta4gamma2 at promoting agonist-dependent binding of [35S]GTPgammaS to either alpha(q) or alpha(i1). Using a competition assay to measure relative affinities of purified betagamma dimers for alpha, the beta4gamma11 dimer had a 15-fold lower affinity for G(i1) alpha than beta4gamma2. Chromatographic characterization of the beta4gamma11 dimer revealed that the betagamma is stable in a heterotrimeric complex with G(i1) alpha; however, upon activation of alpha with MgCl2 and GTPgammaS under nondenaturing conditions, the beta4 and gamma11 subunits dissociate. Activation of purified G(i1) alpha:beta4gamma11 with Mg+2/GTPgammaS following reconstitution into lipid vesicles and incubation with phospholipase C (PLC)-beta resulted in stimulation of PLC-beta activity; however, when this activation preceded reconstitution into vesicles, PLC-beta activity was markedly diminished. In a membrane coupling assay designed to measure the ability of G protein to promote a high-affinity agonist-binding conformation of the A1 adenosine receptor, beta4gamma11 was as effective as beta4gamma2 when coexpressed with G(i1) alpha and receptor. However, G(i1) alpha:beta4gamma11-induced high-affinity binding was up to 20-fold more sensitive to GTPgammaS than G(i1) alpha:beta4gamma2-induced high-affinity binding. These results suggest that the stability of the beta4gamma11 dimer can modulate G protein activity at the receptor and effector.  相似文献   

14.
Ugur O  Onaran HO  Jones TL 《Biochemistry》2003,42(9):2607-2615
Most heterotrimeric G-protein alpha subunits are posttranslationally modified by palmitoylation, a reversible process that is dynamically regulated. We analyzed the effects of Galpha(s) palmitoylation for its intracellular distribution and ability to couple to the beta-adrenergic receptor (betaAR) and stimulate adenylyl cyclase. Subcellular fractionation and immunofluorescence microscopy of stably transfected cyc(-) cells, which lack endogenous Galpha(s), showed that wild-type Galpha(s) was predominantly localized at the plasma membrane, but the mutant C3A-Galpha(s), which does not incorporate [(3)H]palmitate, was mostly associated with intracellular membranes. In agreement with this mislocalization, C3A-Galpha(s) showed neither isoproterenol- or GTPgammaS-stimulated adenylyl cyclase activation nor GTPgammaS-sensitive high-affinity agonist binding, all of which were present in the wild-type Galpha(s) expressing cells. Fusion of C3A-Galpha(s) with the betaAR [betaAR-(C3A)Galpha(s)] partially rescued its ability to induce high-affinity agonist binding and to stimulate adenylyl cyclase activity after isoproterenol or GTPgammaS treatment. In comparison to results with the WT-Galpha(s) and betaAR (betaAR-Galpha(s)) fusion protein, the betaAR-(C3A)Galpha(s) fusion protein was about half as efficient at coupling to the receptor and effector. Chemical depalmitoylation by hydroxylamine of membranes expressing betaAR-Galpha(s) reduced the high-affinity agonist binding and adenylyl cyclase activation to a similar degree as that observed in betaAR-(C3A)Galpha(s) expressing membranes. Altogether, these findings indicate that palmitoylation ensured proper localization of Galpha(s) and facilitated bimolecular interactions of Galpha(s) with the betaAR and adenylyl cyclase.  相似文献   

15.
The subcellular location of a signaling protein determines its ability to transmit messages accurately and efficiently. Three different lipid modifications tether heterotrimeric G proteins to membranes: alpha subunits are myristoylated and/or palmitoylated, and gamma subunits are prenylated. In a previous study, we examined the role of lipid modifications in maintaining the membrane attachment of a G protein alpha subunit, alphaz, which is myristoylated and palmitoylated (Morales, J., Fishburn, C. S., Wilson, P. T., and Bourne, H. R. (1998) Mol. Biol. Cell 9, 1-14). Now we extend this analysis by characterizing the mechanisms that target newly synthesized alphaz to the plasma membrane (PM) and analyze the role of lipid modifications in this process. In comparison with newly synthesized alphas, which is palmitoylated but not myristoylated, alphaz moves more rapidly to the membrane fraction following synthesis in the cytosol. Newly synthesized alphaz associates randomly with cellular membranes, but with time accumulates at the PM. Palmitoylated alphaz is present only in PM-enriched fractions, whereas a nonpalmitoylated mutant of alphaz (alphazC3A) associates less stably with the PM than does wild-type alphaz. Expression of a C-terminal fragment of the beta-adrenoreceptor kinase, which sequesters free betagamma, impairs association of both alphaz and alphazC3A with the PM, suggesting that the alpha subunit must bind betagamma in order to localize at the PM. Based on these findings, we propose a model in which, following synthesis on soluble ribosomes, myristoylated alphaz associates randomly and reversibly with membranes; upon association with the PM, alphaz binds betagamma, which promotes its palmitoylation, thus securing it in the proper place for transmitting the hormonal signal.  相似文献   

16.
G protein-coupled inward rectifier K(+) channels (GIRK channels) are activated directly by the G protein betagamma subunit. The crystal structure of the G protein betagamma subunits reveals that the beta subunit consists of an N-terminal alpha helix followed by a symmetrical seven-bladed propeller structure. Each blade is made up of four antiparallel beta strands. The top surface of the propeller structure interacts with the Galpha subunit. The outer surface of the betagamma torus is largely made from outer beta strands of the propeller. We analyzed the interaction between the beta subunit and brain GIRK channels by mutating the outer surface of the betagamma torus. Mutants of the outer surface of the beta(1) subunit were generated by replacing the sequences at the outer beta strands of each blade with corresponding sequences of the yeast beta subunit, STE4. The mutant beta(1)gamma(2) subunits were expressed in and purified from Sf9 cells. They were applied to inside-out patches of cultured locus coeruleus neurons. The wild type beta(1)gamma(2) induced robust GIRK channel activity with an EC(50) of about 4 nm. Among the eight outer surface mutants tested, blade 1 and blade 2 mutants (D1 and CD2) were far less active than the wild type in stimulating GIRK channels. However, the ability of D1 and CD2 to regulate type I and type II adenylyl cyclases was not very different from that of the wild type beta(1)gamma(2). As to the activities to stimulate phospholipase Cbeta(2), D1 was more potent and CD2 was less potent than the wild type beta(1)gamma(2). Additionally we tested four beta(1) mutants in which mutated residues are located in the top Galpha/beta interacting surface. Among them, mutant W332A showed far less ability than the wild type to activate GIRK channels. These results suggest that the outer surface of blade 1 and blade 2 of the beta subunit might specifically interact with GIRK and that the beta subunit interacts with GIRK both over the outer surface and over the top Galpha interacting surface.  相似文献   

17.
Transfection of either the alpha(1b)-adrenoreceptor or Galpha(11) into a fibroblast cell line derived from a Galpha(q)/Galpha(11) double knockout mouse failed to produce elevation of intracellular [Ca(2+)] upon the addition of agonist. Co-expression of these two polypeptides, however, produced a significant stimulation. Co-transfection of the alpha(1b)-adrenoreceptor with the palmitoylation-resistant C9S,C10S Galpha(11) also failed to produce a signal, and much reduced and kinetically delayed signals were obtained using either C9S Galpha(11) or C10S Galpha(11). Expression of a fusion protein between the alpha(1b)-adrenoreceptor and Galpha(11) allowed [Ca(2+)](i) elevation, and this was also true for a fusion protein between the alpha(1b)-adrenoreceptor and C9S,C10S Galpha(11), since this strategy ensures proximity of the two polypeptides at the cell membrane. For both fusion proteins, co-expression of transducin alpha, as a beta.gamma-sequestering agent, fully attenuated the Ca(2+) signal. Both of these fusion proteins and one in which an acylation-resistant form of the receptor was linked to wild type Galpha(11) were also targets for agonist-regulated [(3)H]palmitoylation and bound [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) in an agonist concentration-dependent manner. The potency of agonist to stimulate [(35)S]GTPgammaS binding was unaffected by the palmitoylation potential of either receptor or G protein. These studies provide clear evidence for coordinated, agonist-mediated regulation of the post-translational acylation of both a receptor and partner G protein and demonstrate the capacity of such fusions to bind and then release beta.gamma complex upon agonist stimulation whether or not the G protein can be palmitoylated. They also demonstrate that Ca(2+) signaling in EF88 cells by such fusion proteins is mediated via release of the G protein beta.gamma complex.  相似文献   

18.
We have used rapid-mix flow cytometry to analyze the early subsecond dynamics of the disassembly of ternary complexes of G protein-coupled receptors (GPCRs) immobilized on beads to examine individual steps associated with guanine nucleotide activation. Our earlier studies suggested that the slow dissociation of Galpha and Gbetagamma subunits was unlikely to be an essential component of cell activation. However, these studies did not have adequate time resolution to define precisely the disassembly kinetics. Ternary complexes were assembled using three formyl peptide receptor constructs (wild type, formyl peptide receptor-Galpha(i2) fusion, and formyl peptide receptor-green fluorescent protein fusion) and two isotypes of the alpha subunit (alpha(i2) and alpha(i3)) and betagamma dimer (beta(1)gamma(2) and beta(4)gamma(2)). At saturating nucleotide levels, the disassembly of a significant fraction of ternary complexes occurred on a subsecond time frame for alpha(i2) complexes and tau(1/2)< or =4s for alpha(i3) complexes, time scales that are compatible with cell activation. beta(1)gamma(2) isotype complexes were generally more stable than beta(4)gamma(2)-associated complexes. The comparison of the three constructs, however, proved that the fast step was associated with the separation of receptor and G protein and that the dissociation of the ligand or of the alpha and betagamma subunits was slower. These results are compatible with a cell activation model involving G protein conformational changes rather than disassembly of Galphabetagamma heterotrimer.  相似文献   

19.
We have used fluorescence resonance energy transfer and co-immunoprecipitation to analyze the interactions among the alpha, beta, and gamma1 subunits of the Arabidopsis heterotrimeric G protein. Using cyan and yellow fluorescent protein fusion constructs, we show that overexpressed Ggamma1 localizes to protoplast membranes, but Gbeta exhibits membrane localization only when the Ggamma1 protein is co-overexpressed. Overexpressed Galpha shows membrane localization unaccompanied by overexpression of either Gbeta or Ggamma1. We detect fluorescence resonance energy transfer between Gbeta and Ggamma1 in the absence of Galpha overexpression and between Galpha and Ggamma1 but only when all three subunits are co-overexpressed. Both Galpha and Gbeta are associated with large macromolecular complexes of approximately 700 kDa in the plasma membrane. Galpha is present in both large complexes and as free Galpha in plasma membranes from wild type plants. In plants homozygous for a null allele of the Gbeta gene, Galpha is associated with smaller complexes in the 200-400-kDa range, indicating that its presence in the large complex depends on association with Gbetagamma. Activation of the Galpha subunit with guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) results in partial dissociation of Galpha from the complex. Hydrogen peroxide (H2O2) promotes extensive dissociation of the Galpha complex but does not interfere with binding of GTPgammaS to purified recombinant Galpha, suggesting that reactive oxygen species affect the stability of the large complex but not the activity of Galpha itself.  相似文献   

20.
Heterotrimeric G protein signaling specificity has been attributed to select combinations of Galpha, beta, and gamma subunits, their interactions with other signaling proteins, and their localization in the cell. With few exceptions, the G protein subunit combinations that exist in vivo and the significance of these specific combinations are largely unknown. We have begun to approach these problems in HeLa cells by: 1) determining the concentrations of Galpha and Gbeta subunits; 2) examining receptor-dependent activities of two effector systems (adenylyl cyclase and phospholipase Cbeta); and 3) systematically silencing each of the Galpha and Gbeta subunits by using small interfering RNA while quantifying resultant changes in effector function and the concentrations of other relevant proteins in the network. HeLa cells express equimolar amounts of total Galpha and Gbeta subunits. The most prevalent Galpha proteins were one member of each Galpha subfamily (Galpha(s), Galpha(i3), Galpha(11), and Galpha(13)). We substantially abrogated expression of most of the Galpha and Gbeta proteins expressed in these cells, singly and some in combinations. As expected, agonist-dependent activation of adenylyl cyclase or phospholipase Cbeta was specifically eliminated following the silencing of Galpha(s) or Galpha(q/11), respectively. We also confirmed that Gbeta subunits are necessary for stable accumulation of Galpha proteins in vivo. Gbeta subunits demonstrated little isoform specificity for receptor-dependent modulation of effector activity. We observed compensatory changes in G protein accumulation following silencing of individual genes, as well as an apparent reciprocal relationship between the expression of certain Galpha(q) and Galpha(i) subfamily members. These findings provide a foundation for understanding the mechanisms that regulate the adaptability and remarkable resilience of G protein signaling networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号