首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that the rate of queuine uptake into cultured human fibroblasts is controlled by phosphorylation levels within the cell. We show that the uptake of queuine is stimulated by activators of protein kinase C (PKC) and inhibitors of protein phosphatase; while inhibitors of PKC, and down-regulation of PKC by chronic exposure to phorbol esters inhibit the uptake of queuine into cultured human fibroblasts. Activators of cAMP- and cGMP-dependent kinases exert no effect on the uptake of queuine into fibroblast cell cultures. These studies suggest that PKC directly supports the activity of the queuine uptake mechanism, and that protein phosphatase activity in the cell acts to reverse this. Regardless of the modulation of uptake rate, the level of intracellular queuine base saturates in 6 h. However, there is still an effect on the incorporation rate of queuine into tRNA of fibroblast cultures even after 24 h. We now show that the incorporation of queuine into tRNA in cultured human fibroblasts by tRNA-guanine ribosyltransferase (TGRase) is also stimulated by activators of PKC and inhibitors of protein phosphatase: while inhibitors of PKC decrease the activity of this enzyme. These studies suggest that PKC supports both the cellular transport of queuine and the activity of TGRase in cultured human fibroblasts, and that protein phosphatase activity in fibroblasts acts to reverse this phenomenon. A kinase-phosphatase control system, that is common to controlling both intracellular signal transduction and many enzyme systems, appears to be controlling the availability of the queuine substrate and the mechanism for its incorporation into tRNA. Since hypomodification of transfer RNA with queuine is commonly observed in undifferentiated, rapidly growing and neoplastically transformed cells, phosphorylation of the queuine modification system may be critical regulatory mechanism for the modification of tRNA and subsequent control of cell growth and differentiation.  相似文献   

2.
Although substantial studies have begun to explore the regulation of phosphatidylinositol 3-kinase/Akt cascade by different signalling pathways, whether protein kinase C (PKC) activity plays a crucial role remains as yet unclear. In this study, we found that in A549 and HEK293 cells non-selective PKC inhibitors Ro 31-8220 and bisindolylmaleimide VIII, and PKCbeta inhibitor LY 379196, caused Akt/PKB phosphorylation at Ser 473 and increased the upstream activator, integrin-linked kinase (ILK) activity. The increased Akt phosphorylation was blocked by phosphatidylinositol 3-kinase inhibitor wortmannin and the newly identified PIP(3)-dependent kinases (PDK) inhibitor SB 203580. In contrast to the Akt stimulation caused by PKC inhibitors, PMA attenuated Akt/PKB phosphorylation. We also found that this stimulating effect on Akt phosphorylation by PKC inhibitors was not the result of phosphatase inhibition, since treatment with PP2A, PP2B and tyrosine phosphatase inhibitors (okadaic acid, FK506 and sodium orthovanadate, respectively) had no effect. We conclude that phosphatidylinositol 3-kinase/Akt signalling pathway is regulated by PKC in a negative manner.  相似文献   

3.
The effect of ciprofibrate on early events of signal transduction was previously studied in Fao cells. Protein kinase C (PKC) assays performed on permeabilized cells showed a more than two-fold increase in PKC activity in cells treated for 24 h with 500 microM ciprofibrate. To show the subsequent effect of this increase on protein phosphorylation, the in vitro phosphorylation on particulate fractions obtained from Fao cells was studied. Among several modifications, the phosphorylation of protein(s) with an apparent molecular mass of 85 kDa was investigated. This modification appeared in the first 24 h of treatment with 500 microM ciprofibrate. It was shown to occur on Ser/Thr residue(s). It was calcium but not calmodulin-dependent. The phosphorylation level of this/these protein(s) was reduced with kinase inhibitors and especially with 300 nM GF-109203X, a specific inhibitor of PKC. All these results suggest that the phosphorylation of the 85 kDa protein(s) is due to a PKC or to another Ser/Thr kinase activated via a PKC pathway. A possible biochemical candidate for 85 kDa protein seems to be the beta isoform of phosphatidylinositol 3-kinase regulatory subunit.  相似文献   

4.
We previously showed (Frace, A.M. and H.C. Hartzell. 1993. Journal of Physiology. 472:305-326) that internal perfusion of frog atrial myocytes with the nonselective protein phosphatase inhibitors microcystin or okadaic acid produced an increase in the L-type Ca current (ICa) and a decrease in the delayed rectifier K current (IK). We hypothesized that microcystin revealed the activity of a protein kinase (PKX) that was basally active in the cardiac myocyte that could phosphorylate the Ca and K channels or regulators of the channels. The present studies were aimed at determining the nature of PKX and its phosphorylation target. The effect of internal perfusion with microcystin on ICa or IK was not attenuated by inhibitors of protein kinase A (PKA). However, the effect of microcystin on ICa was largely blocked by the nonselective protein kinase inhibitors staurosporine (10- 30 nM), K252a (250 nM), and H-7 (10 microM). Staurosporine and H-7 also decreased the stimulation of ICa by isoproterenol, but K252a was more selective and blocked the ability of microcystin to stimulate ICa without significantly reducing isoproterenol-stimulated current. Internal perfusion with selective inhibitors of protein kinase C (PKC), including the autoinhibitory pseudosubstrate PKC peptide (PKC(19-31)) and a myristoylated derivative of this peptide had no effect. External application of several PKC inhibitors had negative side effects that prevented their use as selective PKC inhibitors. Nevertheless, we conclude that PKX is not PKC. PKA and PKX phosphorylate sites with different sensitivities to the phosphatase inhibitors calyculin A and microcystin. In contrast to the results with ICa, the effect of microcystin on IK was not blocked by any of the kinase inhibitors tested, suggesting that the effect of microcystin on IK may not be mediated by a protein kinase but may be due to a direct effect of microcystin on the IK channel.  相似文献   

5.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   

6.
Protein phosphorylation or dephosphorylation is the most important regulatory switch of signal transduction contributing to control of cell proliferation. The reversibility of phosphorylation and dephosphorylation is due to the activities of kinases and phosphatase, which determine protein phosphorylation level of cell under different physiological and pathological conditions. Receptor tyrosine kinase (RTK) mediated cellular signaling is precisely coordinated and tightly controlled in normal cells which ensures regulated mitosis. Deregulation of RTK signaling resulting in aberrant activation in RTKs leads to malignant transformation. Queuine is one of the modified base of tRNA which participates in down regulation of tyrosine kinase activity. The guanine analogue queuine is a nutrient factor to eukaryotes and occurs as free base or modified nucleoside queuosine into the first anticodon position of specific tRNAs. The tRNAs are often queuine deficient in cancer and fast proliferating tissues. The present study is aimed to investigate queuine mediated inhibition in phosphorylation of tyrosine phosphorylated proteins in lymphoma bearing mouse. The result shows high level of cytosolic and membrane associated tyrosine phosphoprotein in DLAT cancerous mouse liver compared to normal. Queuine treatments down regulate the level of tyrosine phosphoproteins, which suggests that queuine is involved in regulation of mitotic signaling pathways.  相似文献   

7.
8.
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.  相似文献   

9.
We postulated that the syntaxins, because of their key role in SNARE complex formation and exocytosis, could be important targets for signaling by intracellular kinases involved in secretion. We found that syntaxin 4 was phosphorylated in human platelets treated with a physiologic agent that induces secretion (thrombin) but not when they were treated with an agent that prevents secretion (prostacyclin). Syntaxin 4 phosphorylation was blocked by inhibitors of activated protein kinase C (PKC), and, in parallel assays, PKC inhibitors also blocked secretion from thrombin-activated platelets. In platelets, cellular activation by thrombin or phorbol 12-myristate 13-acetate decreased the binding of syntaxin 4 with SNAP-23, another platelet t-SNARE. Phosphatase inhibitors increased syntaxin 4 phosphorylation and further decreased syntaxin 4-SNAP-23 binding induced by cell activation. Conversely, a PKC inhibitor blocked syntaxin 4 phosphorylation and returned binding of syntaxin 4-SNAP-23 to that seen in nonstimulated platelets. In vitro, PKC directly phosphorylated platelet syntaxin 4 and recombinant syntaxin 4. PKC phosphorylation in vitro inhibited (71 +/- 8%) the binding of syntaxin 4 to SNAP-23. These results provide evidence that extracellular activation can be coupled through intracellular PKC signaling so as to modulate SNARE protein interactions involved in platelet exocytosis.  相似文献   

10.
These studies demonstrate that treatment of human U-937 cells with ionizing radiation (IR) is associated with activation of a cytoplasmic myelin basic protein (MBP) kinase. Characterization of the kinase by gel filtration and in-gel kinase assays support activation of a 40 kDa protein. Substrate and inhibitor studies further support the induction of protein kinase C (PKC)-like activity. The results of N-terminal amino acid sequencing of the purified protein demonstrate identity of the kinase with an internal region of PKC delta. Immunoblot analysis was used to confirm proteolytic cleavage of intact 78 kDa PKC delta in control cells to the 40 kDa C-terminal fragment after IR exposure. The finding that both IR-induced proteolytic activation of PKC delta and endonucleolytic DNA fragmentation are blocked by Bcl-2 and Bcl-xL supports an association with physiological cell death (PCD). Moreover, cleavage of PKC delta occurs adjacent to aspartic acid at a site (QDN) similar to that involved in proteolytic activation of interleukin-1 beta converting enzyme (ICE). The specific tetrapeptide ICE inhibitor (YVAD) blocked both proteolytic activation of PKC delta and internucleosomal DNA fragmentation in IR-treated cells. These findings demonstrate that PCD is associated with proteolytic activation of PKC delta by an ICE-like protease.  相似文献   

11.
In determining the mechanism of the chemokinetic action of the thiol protease inhibitor, E-64, in endothelial cell monolayers subjected to wounding, we synthesized succinyl-leucyl-agmatine (SLA), an analogue of E-64 that lacked the epoxy group and protease inhibitory effect. We observed that this analogue retained its chemokinetic effect on wounded endothelial cells. Its stimulatory action on endothelial cell polarization response to wounding was rapid and associated with directed cell migration. Furthermore, its effect on cellular polarization was blocked by protein kinase C (PKC) inhibitors and mimicked by pharmacologic agents that stimulated PKC activity. To determine if SLA's chemokinetic action was mediated by protein kinase C activation, we compared the effects of SLA and the tumor promoter phorbol myristate acetate (PMA) on the translocation of PKC activity in endothelial cells. We observed that both SLA and PMA induced the translocation of PKC activity from the cytosolic to the particulate fraction of the cells. We also observed that both SLA and PMA induced the phosphorylation of two proteins (Mr 23.4 and 36.5 kDa) in intact 32P-labeled cells. Thus, SLA stimulates the endothelial cell locomotor response to wounding by stimulating PKC activity.  相似文献   

12.
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.  相似文献   

13.
The occlusion of capillary vessels results in low oxygen tension in adjacent tissues which triggers a signaling cascade that culminates in neovascularization. Using bovine retinal capillary endothelial cells (BRCEC), we investigated the effects of short-term hypoxia on DNA synthesis, phosphotyrosine induction, changes in the expression of basic fibroblast growth factor receptor (bFGFR), protein kinase C (PKCα), heat shock protein 70 (HSP70), and SH2-containing protein (SHC). The effect of protein tyrosine kinase (PTK) and phosphatase inhibitors on hypoxia-induced phosphotyrosine was also studied. Capillary endothelial cells cultured in standard normoxic (pO2 = 20%) conditions were quiesced in low serum containing medium and then exposed to low oxygen tension or hypoxia (pO2 = 3%) in humidified, 5% CO2, 37°C, tissue culture chambers, on a time-course of up to 24 h. DNA synthesis was potentiated by hypoxia in a time-dependent manner. This response positively correlated with the cumulative induction of phosphotyrosine and the downregulation of bFGFR (Mr ~ 85 kDa). Protein tyrosine kinase inhibitors, herbimycin-A, and methyl 2,5-dihydroxycinnamate, unlike genistein, markedly blocked hypoxia-induced phosphotyrosine. Prolonged exposure of cells to phosphatase inhibitor, sodium orthovanadate, also blocked hypoxia-induced phosphotyrosine. The expression of HSP70, PKCα, and SHC were not markedly altered by hypoxia. Taken together, these data suggest that short-term hypoxia activates endothelial cell proliferation in part via tyrosine phosphorylation of cellular proteins and changes in the expression of the FGF receptor. Thus, endothelial cell mitogenesis and neovascularization associated with low oxygen tension may be controlled by abrogating signaling pathways mediated by protein tyrosine kinase and phosphatases. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C.  相似文献   

15.
The muscarinic agonist carbachol stimulated phospholipase D (PLD) in rat submandibular gland (RSMG) ductal cells in a time and concentration-dependent manner. This effect was inhibited by chelation of extracellular calcium with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). PLD could also be activated by epinephrine and AlF(4)(-), two polyphosphoinositide-specific phospholipase C (PPI-PLC) activators, and by the phorbol ester o-tetradecanoylphorbol 13-acetate (TPA) which activates protein kinase C (PKC). Ionomycin and thapsigargin only slightly increased PLD activity. Ortho-vanadate, a tyrosine phosphatase inhibitor, also stimulated PLD activity. Both carbachol and o-vanadate increased the formation of inositol phosphates and the tyrosine phosphorylation of at least two proteins (55-60 and 120 kDa). Calphostin C (a PKC inhibitor), U73122 (a PPI-PLC inhibitor) and genistein (a tyrosine kinase inhibitor) blocked the activation of PLD, of PLC and the phosphorylation of tyrosyl residues in response to carbachol and vanadate. Taken together, these results suggest that rat submandibular gland ductal cells express a calcium-dependent PLD activity. This enzyme is regulated by carbachol via a PLC-PKC-tyrosine kinase pathway.  相似文献   

16.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

17.
18.
Stimulation of intestinal fructose absorption by phorbol 12-myristate 13-acetate (PMA) results from rapid insertion of GLUT2 into the brush-border membrane and correlates with protein kinase C (PKC) betaII activation. We have therefore investigated the role of phosphatidylinositol 3 (PI3)-kinase and mammalian target of rapamycin in the regulation of fructose absorption by PKC betaII phosphorylation. In isolated jejunal loops, stimulation of fructose absorption by PMA was inhibited by preperfusion with wortmannin or rapamycin, which blocked GLUT2 activation and insertion into the brush-border membrane. Antibodies to the last 18 and last 10 residues of the C-terminal region of PKC betaII recognized several species differentially in Western blots. Extensive cleavage of native enzyme (80/78 kDa) to a catalytic domain product of 49 kDa occurred. PMA and sugars provoked turnover and degradation of PKC betaII by dephosphorylation to a 42-kDa species, which was converted to polyubiquitylated species detected at 180 and 250+ kDa. PMA increased the level of the PKC betaII 49-kDa species, which correlates with the GLUT2 level; wortmannin and rapamycin blocked these effects of PMA. Rapamycin and wortmannin inhibited PKC betaII turnover. PI3-kinase, PDK-1, and protein kinase B were present in the brush-border membrane, where their levels were increased by PMA and blocked by the inhibitors. We conclude that GLUT2-mediated fructose absorption is regulated through PI3-kinase and mammalian target of rapamycin-dependent pathways, which control phosphorylation of PKC betaII and its substrate-induced turnover and ubiquitin-dependent degradation. These findings suggest possible mechanisms for short term control of intestinal sugar absorption by insulin and amino acids.  相似文献   

19.
1. In freshly isolated rat hepatocytes, the activity of the AMP-activated protein kinase is high, but decreases by 5-10-fold during incubation of the cells for 60 min. The expressed activity of acetyl-CoA carboxylase is initially very low, then rises in a reciprocal manner to the AMP-activated protein kinase activity. For both enzymes, treatment of partially purified preparations under dephosphorylating conditions abolishes the difference in activity between freshly isolated and preincubated cells. Thus, both the high activity of the AMP-activated protein kinase and the low activity of acetyl-CoA carboxylase in freshly isolated cells can be explained by phosphorylation. 2. Immediately after isolation, the hepatocytes have AMP/ATP ratios that are unphysiologically high (approximately 1:1.5). During incubation of the cells for 60 min, AMP levels fall and ATP levels rise so that the ratio becomes about 1:15, close to previous estimates of the ratio in freeze-clamped liver. The fall in AMP/ATP ratio precedes the decrease in AMP-activated protein kinase activity. 3. In cells which have been incubated for 60 min, treatment with 20 mM fructose, which causes a large but transient increase in the AMP/ATP ratio, also causes concomitant activation of the AMP-activated protein kinase and inactivation of acetyl-CoA carboxylase. 4. In all cases described above, the increases in activity of acetyl-CoA carboxylase were blocked by treatment with the cell-permeable protein phosphatase inhibitor, okadaic acid. However, the decreases in activity of the AMP-activated protein kinase were not blocked by this inhibitor. This is consistent with the finding that okadaic-acid-insensitive protein phosphatase 2C is the most effective at dephosphorylating the kinase in cell-free assays. 5. The results above suggested that AMP either promotes phosphorylation, or inhibits dephosphorylation, of the kinase. Studies in a partially purified cell-free system suggested that the former hypothesis was correct; reactivation of dephosphorylated AMP-activated protein kinase by kinase kinase was completely dependent on the presence of AMP. 6. Our results, obtained in both intact cells and a cell-free system, suggest that rises in the AMP/ATP ratio promote phosphorylation of the AMP-activated protein kinase by the kinase kinase, as well as causing direct allosteric activation. This represents a very sensitive system for switching off lipid biosynthetic pathways when ATP levels are limiting. The results with okadaic acid also suggest that protein phosphatase 2C is mainly responsible for dephosphorylation of the AMP-activated protein kinase in intact hepatocytes.  相似文献   

20.
The intracellular localization of protein kinase C (PKC) is important for the regulation of its biological activity. Recently, it was reported that, whereas phorbol esters such as PMA induce prolonged translocation of PKC to the plasma membrane, with physiological stimuli, the translocation of PKC is transient and followed by rapid return to the cytoplasm. In addition, this membrane dissociation of PKC was shown to require both the kinase activity of PKC and the phosphorylation of its carboxyl terminus autophosphorylation sites. However, the detailed molecular mechanism of PKC reverse translocation remains obscure. We demonstrated that in porcine polymorphonuclear leucocytes (PMNs), phenylarsine oxide (PAO), a putative protein tyrosine phosphatase (PTPase) inhibitor, induced reverse translocation of PMA-stimulated PKCbetaII. Hydrogen peroxide (H(2)O(2)) in combination with vanadate, both of which are PTPase inhibitors, also induced reverse translocation of PKCbetaII. H(2)O(2) or vanadate alone had little effect on PMA-induced PKCbetaII translocation. Furthermore, genistein and ethanol, which are inhibitors of tyrosine kinase and phospholipase D, respectively, prevented the PKCbetaII reverse translocation induced by the PTPase inhibitors. These results indicate, for the first time, that the tyrosine phosphorylation/phospholipase D pathway may be involved in the process of membrane dissociation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号