首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Import of in vitro-synthesized cytochrome b2 (a soluble intermembrane space enzyme) was studied wih isolated yeast mitochondria. Import requires an electrochemical gradient across the inner membrane and is accompanied by cleavage of the precursor to the corresponding mature form. This conversion proceeds via an intermediate form of cytochrome b2, which can be detected as a transient species when mitochondria are incubated with the cytochrome b2 precursor for short times or at low temperatures. Conversion of the precursor to the intermediate form is energy-dependent and catalyzed by an o-phenanthroline-sensitive protease located in the soluble matrix. The intermediate is subsequently converted to mature cytochrome b2 in a reaction which is o-phenanthroline-insensitive and requires neither an energized inner membrane nor a soluble component of the intermembrane space. Whereas mature cytochrome b2 is soluble, the intermediate formed by isolated mitochondria is membrane-bound and exposed to the intermembrane space. The same intermediate is detected as a transient species during cytochrome b2 maturation in intact yeast cells (Reid, G. A., Yonetani, T., and Schatz, G (1982) J. Biol. Chem. 257, 13068-13074). The in vitro studies reported here suggest that a part of the cytochrome b2 precursor polypeptide chain is transported to the matrix where it is cleaved to a membrane-bound intermediate form by the same protease that processes polypeptides destined for the matrix space or for the inner membrane. In a second reaction, the cytochrome b2 intermediate is converted to mature cytochrome b2 which is released into the intermembrane space. The binding of heme is not necessary for converting the intermediate to the mature polypeptide.  相似文献   

2.
The bulk of NADH kinase of Saccharomyces cerevisiae was recovered in the mitochondrial fraction prepared from spheroplasts. Most of the NADH kinase was localized in the inner membrane fraction, which was separated from other mitochondrial components by the combined swelling, shrinking, and sonication procedure. Treatment of mitoplasts with antiserum against the NADH kinase caused inactivation of the enzyme. On the contrary, no influence was observed upon the same treatment of intact mitochondria. p-Chloromercuribenzoate and eosin-5-maleimide inactivated the enzyme without affecting the matrix ATPase. The NADH kinase was enzymatically iodinated in mitoplasts, but not in the intact mitochondria. These results support the conclusion that NADH kinase is localized and functions at the intermembrane space side of the mitochondrial inner membrane. It is evident that the NADH kinase is encoded by nuclear gene(s) because it is synthesized in the presence of chloramphenicol or acriflavine, and a significant amount of the enzyme was detected in mitochondrial DNA-deficient mutants.  相似文献   

3.
G Müller  W Bandlow 《Biochemistry》1989,28(26):9974-9981
The amphitropic cAMP-binding protein in mitochondria of the yeast Saccharomyces cerevisiae is released from the inner membrane into the intermembrane space by the degradation of its lipid membrane anchor consisting of or containing phosphatidylinositol. The releasing reaction depends on the presence of an N-ethylmaleimide-sensitive protein (releasing factor) in the intermembrane space and is controlled by Ca2+ and phospholipid (or lipid derivatives). Here we demonstrate that these two effector molecules act on different activation steps within a complex releasing pathway involving both the cAMP receptor and the releasing factor: Ca2(+)-dependent phosphorylation of the receptor protein seems to be prerequisite for its subsequent lipolytic liberation from the inner membrane. In the presence of phospholipid (or lipid derivatives) the previously soluble releasing factor, which may be identical with a soluble diacylglycerol-binding protein in the mitochondrial intermembrane space, associates with the inner membrane. This change in the intramitochondrial location of the releasing factor, which thus exhibits amphitropic behavior itself, may be required for (direct or indirect) activation of the mitochondrial phospholipase which then releases the cAMP receptor from the inner membrane in a form liable to dissociation from the C subunit by cAMP.  相似文献   

4.
Enzyme distribution in potato mitochondria was investigatedby selectively disrupting the outer and inner membranes withdigitonin. Antimycin-insensitive NADH-cytochrome c reductase,an outer membrane marker, was released at low digitonin concentrations(0.1 mg mg–1 mitochondrial protein). Soluble matrix enzymes,fumarase and malate dehydrogenase were released at 0.3–0.4mg digitonin mg–1 protein, as the inner membrane ruptured.Very little (about 10%) cytochrome oxidase activity was released,even at higher digitonin concentrations, in accord with thisenzyme being an integral inner membrane protein. By this criterionadenylate kinase is also firmly bound to the inner membrane.Evidence indicates that it faces the intermembrane space. Malic enzyme activity was released by the same digitonin concentrationthat released fumarase and malate dehydrogenase, indicatingthat malic enzyme is a soluble matrix enzyme. No activity wasreleased at low digitonin concentrations which selectively breakthe outer membrane, showing that malic enzyme is not presentin the intermembrane space. Considerable catalase activity (20—40 µmol O2 min–1mg–1 protein) was associated with washed mitochondrialpreparations, but 95% of this was lost upon purification ofmitochondria. The remaining activity was firmly bound to themitochondrial membranes.  相似文献   

5.
We have inactivated the nuclear gene coding for a putative NAD(P)H dehydrogenase from the inner membrane of Neurospora crassa mitochondria by repeat-induced point mutations. The respiratory rates of mitochondria from the resulting mutant (nde-1) were measured, using NADH or NADPH as substrates under different assay conditions. The results showed that the mutant lacks an external calcium-dependent NADPH dehydrogenase. The observation of NADH and NADPH oxidation by intact mitochondria from the nde-1 mutant suggests the existence of a second external NAD(P)H dehydrogenase. The topology of the NDE1 protein was further studied by protease accessibility, in vitro import experiments, and in silico analysis of the amino acid sequence. Taken together, it appears that most of the NDE1 protein extends into the intermembrane space in a tightly folded conformation and that it remains anchored to the inner mitochondrial membrane by an N-terminal transmembrane domain.  相似文献   

6.
The mitochondrial localization of coproporphyrinogen III oxidase.   总被引:2,自引:0,他引:2       下载免费PDF全文
The location of coproporphyrinogen III oxidase in mitochondria was studied in rat liver by using the digitonin method or hypo-osmotic media for fractionation. The enzyme was found in the intermembrane space with a fraction loosely bound to the inner membrane. This fraction was released by washing the inner-membrane-matrix complex with alkaline solutions or solutions of high ionic strength. The enzyme in both fractions had the same Km (0.16 micrometer) for coproporphyrinogen III. When incubation was performed in a medium that avoided destruction of enzyme membrane binding, a dramatic increase in activity was observed after sonication of whole mitochondria or of the inner-membrane-matrix complex.  相似文献   

7.
When rat liver mitochondria were suspended in 0.15 m KCl, the cytochrome c appeared to be solubilized from the binding site on the outside of the inner membrane and trapped in the intermembrane space. When the outer membrane of these mitochondria was disrupted with digitonin at a digitonin concentration of 0.15 mg/mg of protein, the solubilized cytochrome c could be released from mitochondria along with adenylate kinase. When mitochondria were suspended in 0.15 m KCl instead of 0.33 m sucrose, the ADPO ratio observed with succinate, β-hydroxybutyrate, malate + pyruvate or glutamate as substrates was little affected. A number of cycles of State 4-State 3-State 4 with ADP was observed. The respiratory control ratios, however, were decreased, particularly when glutamate was used as the substrate. Cytochrome c oxidase activity was also decreased to 55% when assayed using ascorbate + N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) as substrates. Suspension of mitochondria in 0.15 m KCl resulted in an enhancement of the very low NADH oxidation by intact mitochondria and a twofold enhancement of sulfite oxidation. Trapped cytochrome c in outer membrane vesicles prepared from untreated and trypsin-treated intact mitochondria was found to be readily reduced by NADH and suggests that some cytochrome b5 is located on the inner surface of the outer membrane. The enhanced NADH oxidase could therefore reflect the ability of cytochrome c to mediate intermembrane electron transport. The enhanced sulfite oxidase activity was sensitive to cyanide inhibition and coupled to oxidative phosphorylation (ADPO < 1) unlike the activity of mitochondria in sucrose medium. These results suggest that free cytochrome c in the intermembrane space can mediate electron transfer between the sulfite oxidase and the inner membrane.  相似文献   

8.
Smith DJ  Ng H  Kluck RM  Nagley P 《IUBMB life》2008,60(6):383-389
Mitochondria play a key role in death signaling. The intermembrane space of these organelles contains a number of proteins which promote cell death once they are redistributed to the cytosol. The formation of pores in the outer membrane of mitochondria defines a gateway through which the apoptogenic proteins pass during death signaling. Interactions between pro-apoptotic and pro-survival members of the Bcl-2 family of proteins are decisive in the initiation of pore opening. While the specific composition of the pore in molecular terms is still subject to debate and continuing investigation, it is recognized functionally as a passive channel which not only allows egress of proteins to cytosol but also entry in the reverse direction. A variety of constraints may restrict the release of proteins from the intermembrane space to the cytosol. These include trapping in the intercristal spaces formed by the convoluted invaginations of the inner membrane, binding of proteins to the inner membrane or to other soluble proteins of the intermembrane space, or insertion of proteins into the inner membrane. There is a corresponding variety of mechanisms that facilitate release of apoptogenic proteins from such entrapment. Morphological changes that expand the inner membrane enable proteins to be released from enclosure in intercristal spaces, allowing these proteins access to the mitochondrial gateway. Specific cases include cytochrome c molecules bound to inner membrane cardiolipin and released upon oxidation of that lipid component. Further, AIF that is embedded in the inner membrane is released by proteases (caspases or calpains), which enter from the cytosol once the outer membrane pore has opened. The facilitation (or restriction) of apoptogenic protein release through the mitochondrial gateway may provide new opportunities for regulating cell death.  相似文献   

9.
Mitochondria from the muscle of the parasitic nematode Ascaris lumbricoides var. suum function anaerobically in electron transport-associated phosphorylations under physiological conditions. These helminth organelles have been fractionated into inner and outer membrane, matrix, and intermembrane space fractions. The distributions of enzyme systems were determined and compared with corresponding distributions reported in mammalian mitochondria. Succinate and pyruvate dehydrogenases as well as NADH oxidase, Mg++-dependent ATPase, adenylate kinase, citrate synthase, and cytochrome c reductases were determined to be distributed as in mammalian mitochondria. In contrast with the mammalian systems, fumarase and NAD-linked "malic" enzyme were isolated primarily from the intermembrane space fraction of the worm mitochondria. These enzymes are required for the anaerobic energy-generating system in Ascaris and would be expected to give rise to NADH in the intermembrane space. The need for and possible mechanism of a proton translocation system to obtain energy generation is suggested.  相似文献   

10.
Addition of exogenous NADH to rotenone- and antimycin A-treated mitochondria, in 125 mM KCl, results in rates of oxygen uptake of 0.5-1 and 10-12 nanoatoms of oxygen X mg protein-1 X min-1 in the absence and presence of cytochrome c, respectively. During oxidation of exogenous NADH there is a fast and complete reduction of cytochrome b5 while endogenous or added exogenous cytochrome c become 10-15% and 100% reduced, respectively. The reoxidation of cytochrome b5, after exhaustion of NADH, precedes that of cytochrome c. NADH oxidation is blocked by mersalyl, an inhibitor of NADH-cytochrome b5 reductase. These observations support the view of an electron transfer from the outer to the inner membrane of intact mitochondria. Both the rate of exogenous NADH oxidation and the steady state level of cytochrome c reduction increase with the increase of ionic strength, while the rate of succinate oxidation undergoes a parallel depression. These observations suggest that the functions of cytochrome c as an electron carrier in the inner membrane and as an electron shuttle in the intermembrane space are alternative. It is concluded that aerobic oxidation of exogenous NADH involves the following pathway: NADH leads to NADH-cytochrome b5 reductase leads to cytochrome b5 leads to intermembrane cytochrome c leads to cytochrome oxidase leads to oxygen. It is suggested that the communication between the outer and inner membranes mediated by cytochrome c may affect the oxidation-reduction level of cytosolic NADH and the related oxidation-reduction reactions.  相似文献   

11.
Phosphate-dependent glutaminase is associated with the inner membrane of rat renal mitochondria. The orientation of this enzyme was characterized by comparing its sensitivity in isolated mitochondria and in mitoplasts to two membrane impermeable inhibitors. Mitoplasts were prepared by repeated swelling of mitochondria in a hypotonic phosphate solution. This procedure released greater than 70% of the adenylate kinase from the intermembrane space, but less than 10 and 25% of the marker activities characteristic of the inner membrane and matrix compartments, respectively. The addition of 20 microM p-chloromercuriphenylsulfonate (pCMPS) caused a rapid inactivation of the purified glutaminase. In contrast, the glutaminase contained in isolated mitochondria and mitoplasts was only slightly affected by the addition of up to 2 mM pCMPS. Similarly, the activity in mitochondria and mitoplasts was not inhibited by the addition of an excess of inactivating Fab antibodies. However, a similar extent of inactivation occurred when either membrane fraction was incubated with concentrations of octylglucoside greater than 0.35%. Mitochondria were also treated with increasing concentrations of digitonin. At 0.4 mg digitonin/mg protein, all of the adenylate kinase was released but the glutaminase activity was either slightly inhibited or unaffected by the addition of pCMPS or the Fab antibodies, respectively. These studies establish that the glutaminase is localized on the inner surface of the inner membrane. Therefore, mitochondrial catabolism of glutamine must occur only within the matrix compartment.  相似文献   

12.
Several precursors transported from the cytoplasm to the intermembrane space of yeast mitochondria are first cleaved by the MAS-encoded protease in the matrix space and then by additional proteases that have not been characterized. We have now developed a specific assay for one of these other proteases. The enzyme is an integral protein of the inner membrane; it requires divalent cations and acidic phospholipid for activity, and is defective in yeast mutant pet ts2858 which accumulates an incompletely processed cytochrome b2 precursor. The protease contains a 21.4 kd subunit whose C-terminal part is exposed on the outer face of the inner membrane. An antibody against this polypeptide inhibits the activity of the protease. As overproduction of the polypeptide does not increase the activity of the protease in mitochondria, the enzyme may be a hetero-oligomer. This 'inner membrane protease I' shares several key features with the leader peptidase of Escherichia coli and the signal peptidase of the endoplasmic reticulum.  相似文献   

13.
Mitochondria from the muscle of Ascaris lumbricoides var. suis function anaerobically. NADH is generated in the intermembrane space as a consequence of the "malic" enzyme reaction. It has been suggested that this reducing equivalent in the form of hydride ion, would be translocated across the inner membrane in order to mediate ATP generation via the fumarate reductase reaction. In accord with this suggestion, intact Ascaris mitochondria showed appreciable NADH oxidase activity. Sonication resulted in an approximately 2-fold increase in NADH oxidase activity, whereas "malic" enzyme, fumarase, and NADH:NAD+ transhydrogenase activities increased approximately 7- to 14-fold, respectively. Phosphorylation capabilities and permeability toward pyridine nucleotides also indicated the intactness of the mitochondria. Ascaris mitochondria incubated anaerobically in the presence of fumarate, and [14C]NADH catalyzed a rapid reduction of the fumarate to succinate with the concomitant formation of equivalent quantities of extramitochondrial NAD+. However, very little isotope was recovered from the washed mitochondria, indicating the possibility of hydride ion translocation in the absence of nucleotide translocation. NADH:NAD+ transhydrogenase has been isolated from the muscle mitochondria of the intestinal nematode, Ascaris lumbricoides var. suis. The enzyme seems to have been solubilized from the mitochondrial membrane fraction by treatment with sodium deoxycholate followed by dialysis and subsequent adsorption by and elution from alumina C gamma. No NADPH:NAD+ transhydrogenase activity was detectable, making the Ascaris system unique over others reported. Activity was protected by L-cysteine, reduced glutathione and dithioerythritol, but strongly inhibited by low concentrations of p-chloromercuribenzoate or silver nitrate. The thionicotinamide derivative of NAD+ (thioNAD+) was employed to accept hydride ions from NADH in order to assay spectrophotometrically at 398 nm. Apparent Km values for thioNAD+ and NADH were 1 X 10(-4) M and 8 X 10(-6) M, respectively. That the physiological nucleotide, could act as hydride ion acceptor from NADH was indicated by the findings that NAD+ competitively inhibited the reduction of thioNAD+ when assayed at 398 nm. The additional finding of a noncompetitive inhibition between NAD+ and NADH suggested at least two binding sites on the enzyme, one for NADH and another common site for NAD+ and thioNAD+. More conclusive evidence indicating the participation of NAD+ as acceptor was obtained by incubation of the enzyme with NADH and [14C]NAD+ and demonstrating a rapid formation of [14C]NADH. These findings, in conjunction with those discussed above, suggest a physiological function of this enzyme in hydride ion translocation.  相似文献   

14.
Mitochondria harbor a conserved proteolytic system that mediates the complete degradation of organellar proteins. ATP-dependent proteases, like a Lon protease in the matrix space and m- and i-AAA proteases in the inner membrane, degrade malfolded proteins within mitochondria and thereby protect the cell against mitochondrial damage. Proteolytic breakdown products include peptides and free amino acids, which are constantly released from mitochondria. It remained unclear, however, whether the turnover of malfolded proteins involves only ATP-dependent proteases or also oligopeptidases within mitochondria. Here we describe the identification of Mop112, a novel metallopeptidase of the pitrilysin family M16 localized in the intermembrane space of yeast mitochondria. This peptidase exerts important functions for the maintenance of the respiratory competence of the cells that overlap with the i-AAA protease. Deletion of MOP112 did not affect the stability of misfolded proteins in mitochondria, but resulted in an increased release from the organelle of peptides, generated upon proteolysis of mitochondrial proteins. We find that the previously described metallopeptidase saccharolysin (or Prd1) exerts a similar function in the intermembrane space. The identification of peptides released from peptidase-deficient mitochondria by mass spectrometry indicates a dual function of Mop112 and saccharolysin: they degrade peptides generated upon proteolysis of proteins both in the intermembrane and matrix space and presequence peptides cleaved off by specific processing peptidases in both compartments. These results suggest that the turnover of mitochondrial proteins is mediated by the sequential action of ATP-dependent proteases and oligopeptidases, some of them localized in the intermembrane space.  相似文献   

15.
We have developed a fast and reliable method for the separation of two membrane fractions respectively enriched in outer and inner envelope membranes from isolated, intact, purified spinach chloroplasts kept in a hypertonic medium (0.6 M mannitol). This separation was achieved by osmotically shrinking the inner envelope membrane, thus widening the intermembrane space, and then subsequently removing the "loosened" outer envelope membrane by applying low pressure to the shrunken chloroplasts and slowly extruding them through the small aperture of a Yeda press under controlled conditions. By centrifugation of the mixture obtained through a discontinuous sucrose gradient, we were able to separate two membrane fractions having different densities (fraction 2 or light fraction, d = 1.08 g/cm3, and fraction 3 or heavy fraction, d = 1.13 g/cm3). The recent characterization of polypeptides localized on the outer envelope membrane from spinach chloroplasts, E10 and E24 (Joyard, J., Billecocq, A., Bartlett, S. G., Block, M. A., Chua, N.-H., and Douce, R. J. Biol. Chem., 258, 10000-10006) enabled us to characterize our two membrane fractions. Analyses of the polypeptides by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis and immunoblotting have shown that fraction 2 (light fraction) was completely devoid of polypeptide E30, which is involved in the transport of phosphate across the inner envelope membrane, but was enriched in polypeptides E10 and E24. The reverse was true for fraction 3 (heavy fraction). Under these conditions, it is clear that fraction 2 is strongly enriched in outer envelope membrane whereas fraction 3 consisted mostly of inner envelope membrane. Indeed, by immunoelectrophoresis, we were able to demonstrate that, on a protein basis, fraction 2 contained about 90% of outer membrane, whereas fraction 3 contained about 80% of inner membrane. Further characterization of the outer envelope membrane was achieved by using thermolysin, a nonpenetrant protease.  相似文献   

16.
Summary The stereospecificity of NADH-ferricyanide reductase activities in the inner mitochondrial membrane, peroxisomal membrane, plasma membrane and tonoplast are all specific for the -hydrogen of NADH whereas the reductases in the ER, the Golgi and the outer mitochondrial membrane are -specific. This shows unequivocally that the NADH-ferricyanide activity in the plasma membrane is not caused by ER contamination. In all the membranes one or several polypeptides with an apparent size of 45–50 kDa cross-react with antibodies raised against a microsomal NADH-ferricyanide reductase. An NADH-ferricyanide reductase was purified from spinach leaf plasma membranes. The enzyme was released from the membrane by CHAPS solubilization and purified 360-fold by ion-exchange chromatography followed by affinity chromatography and size exclusion chromatography on FPLC. A major band of 45 kDa was detected by SDS-PAGE and it cross-reacted with the anti-NADH-ferricyanide reductase antibodies. The native size of the enzyme is 160 kDa as determined by size-exclusion chromatography indicating that it is a tetramer. Isoelectric focusing revealed three isoenzymes between pH 5.3 and 5.6. The enzyme shows typical FAD fluorescence spectra with excitation peaks at 371 and 468 nm and an emission peak at 525 nm. It is specific for the -hydrogen of NADH and prefers NADH over NADPH as electron donor. It is highly specific for ferricyanide as electron acceptor and it is therefore unlikely to be the enzyme responsible for iron reduction on the outer surface of the plasma membrane.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammoniol]-1-propanesulfonate - DQ duroquinone - FPLC fast protein liquid chromatography; Ferricyanide hexacyanoferrate(III) - NEM N-ethylmaleimide - PCMB p-chloromercurobenzoate - SHAM salicylhydroxamic acid - SMP submitochondrial particles  相似文献   

17.
Rat liver mitochondria were subfractionated into outer membrane, intermembrane and mitoplast (inner membrane and matrix) fractions. Of the recovered protein kinase activity, 80-90% was found in the intermembrane fraction, while the rest was associated with mitoplasts. The intermembrane protein kinase was stimulated by cyclic AMP, while the mitoplast enzyme was stimulated by the nucleotide only after treatment with Triton X-100. Extracted protein kinase resolved into three peaks on DEAE-cellulose chromatography. All three peaks were present both in the intermembrane fraction and in mitoplasts. One peak corresponded to the catalytic subunit of cyclic AMP-dependent protein kinases, one was a cyclic AMP-independent enzyme, and the third was the cyclic AMP-dependent type II enzyme. The endogenous incorporation of phosphate was particularly high in the outer mitochondrial membrane, and occurred also in the mitoplast fraction. The incorporation in mitoplasts was to a double band of Mr 47 500, and in outer membranes to apparently heterogeneous material of comparatively low molecular weight.  相似文献   

18.
Plant mitochondria have the unique ability to directly oxidize exogenous NAD(P)H. We recently separated two NAD(P)H dehydrogenase activities from maize (Zea mays L.) mitochondria using anion-exchange (Mono Q) chromatography. The first peak of activity oxidized only NADH, whereas the second oxidized both NADH and NADPH. In this paper we describe the purification of the first peak of activity to a 32-kD protein. Polyclonal antibodies to the 32-kD protein were used to show that it was present in mitochondria from several plant species. Two-dimensional gel analysis of the 32-kD NADH dehydrogenase indicated that it consisted of two major and one minor isoelectric forms. Immunoblot analysis of submitochondrial fractions indicated that the 32-kD protein was enriched in the soluble protein fraction after mitochondrial disruption and fractionation; however, some association with the membrane fraction was observed. The membrane-impermeable protein cross-linking agent 3,3[prime] -dithiobis-(sulfosuccinimidylpropionate) was used to further investigate the submitochondrial location of the 32-kD NADH dehydrogenase. The 32-kD protein was localized to the outer surface of the inner mitochondrial membrane or to the intermembrane space. The pH optimum for the enzyme was 7.0. The activity was found to be severely inhibited by p-chloromercuribenzoic acid, mersalyl, and dicumarol, and stimulated somewhat by flavin mononucleotide.  相似文献   

19.
The mechanism of selective protein degradation of membrane proteins in mitochondria has been studied employing a model protein that is subject to rapid proteolysis within the inner membrane. Protein degradation was mediated by two different proteases: (i) the m-AAA protease, a protease complex consisting of multiple copies of the ATP-dependent metallopeptidases Yta1Op (Afg3p) and Yta12p (Rcalp); and (ii) by Ymelp (Ytallp) that also is embedded in the inner membrane. Ymelp, highly homologous to Yta1Op and Yta12p, forms a complex of approximately 850 kDa in the inner membrane and exerts ATP-dependent metallopeptidase activity. While the m-AAA protease exposes catalytic sites to the mitochondrial matrix, Ymelp is active in the intermembrane space. The Ymelp complex was therefore termed 'i-AAA protease'. Analysis of the proteolytic fragments indicated cleavage of the model polypeptide at the inner and outer membrane surface and within the membrane-spanning domain. Thus, two AAA proteases with their catalytic sites on opposite membrane surfaces constitute a novel proteolytic system for the degradation of membrane proteins in mitochondria.  相似文献   

20.
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane flavoprotein that is translocated to the nucleus in response to proapoptotic stimuli, where it induces nuclear apoptosis. Here we show that AIF is synthesized as an approximately 67-kDa preprotein with an N-terminal extension and imported into mitochondria, where it is processed to the approximately 62-kDa mature form. Topology analysis revealed that mature AIF is a type-I inner membrane protein with the N-terminus exposed to the matrix and the C-terminal portion to the intermembrane space. Upon induction of apoptosis, processing of mature AIF to an approximately 57-kDa form occurred caspase-independently in the intermembrane space, releasing the processed form into the cytoplasm. Bcl-2 or Bcl-XL inhibited both these events. These findings indicate that AIF release from mitochondria occurs by a two-step process: detachment from the inner membrane by apoptosis-induced processing in the intermembrane space and translocation into the cytoplasm. The results also suggest the presence of a unique protease that is regulated by proapoptotic stimuli in caspase-independent cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号