首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin phosphatase (MP) is a major phosphatase responsible for the dephosphorylation of the regulatory light chain of myosin II. MYPT1, a target subunit of smooth and nonmuscle MP, is responsible for activation and regulation of MP. To identity the physiological roles of MP, we have generated MYPT1-deficient mice by gene targeting. The heterozygous mice showed no changes in expression levels of MYPT1 and no distinct phenotype compared to wild-type mice was observed. None of the F2 mice were homozygous for the MYPT1 deletion, indicating that the targeted disruption of the MYPT1 gene resulted in embryonic lethality. The point of embryonic lethality is before 7.5 dpc. These findings indicate that MYPT1 is essential for mouse embryogenesis.  相似文献   

2.
The targeted disruption of the CD98 gene results in embryonic lethality   总被引:1,自引:0,他引:1  
CD98 is one of the important molecules for development, cell differentiation, cell proliferation, and regulation of cellular function. In this study, CD98 heavy chain (HC) knockout mice were produced and analyzed. Five targeted ES clones were obtained and colony frequency was about 2%. One (clone 113) of the five heterozygous ES cell clones had undergone aberrant recombination at the 5' side. The aberrant recombination happened at the site between second intron and 5' arm. All lines from correctly targeted clones could not transmit the mutated allele to spermatozoa. The mutated allele derived from the aberrant targeted clone was transmitted to the progeny. However, none of the F2 mice was homozygous for the CD98 mutation, indicating that the targeted disruption of the CD98 gene results in embryonic lethality. The point of embryonic lethality is considered to be between 3.5 and 9.5 dps. These findings indicate that CD98 molecules are essential for mouse embryogenesis.  相似文献   

3.
4.
5.
A multitude of guanine nucleotide exchange factors (GEFs) regulate Rap1 small GTPases, however, their individual functions remain obscure. Here, we investigate the in vivo function of the Rap1 GEF RA-GEF-1. The expression of RA-GEF-1 in wild-type mice starts at embryonic day (E) 8.5, and continues thereafter. RA-GEF-1(-/-) mice appear normal until E7.5, but become grossly abnormal and dead by E9.5. This mid-gestation death appears to be closely associated with severe defects in yolk sac blood vessel formation. RA-GEF-1(-/-) yolk sacs form apparently normal blood islands by E8.5, but the blood islands fail to coalesce into a primary vascular plexus, indicating that vasculogenesis is impaired. Furthermore, RA-GEF-1(-/-) embryos proper show severe defects in the formation of major blood vessels. These results suggest that deficient Rap1 signaling may lead to defective vascular morphogenesis in the yolk sac and embryos proper.  相似文献   

6.
Eg5, a member of the widely conserved kinesin-5 family, is a plus-end-directed motor involved in separation of centrosomes, and in bipolar spindle formation and maintenance during mitosis in vertebrates. To investigate the requirement for Eg5 in mammalian development, we have generated Eg5 deficient mice by gene targeting. Heterozygous mice are healthy, fertile, and show no detectable phenotype, whereas Eg5−/− embryos die during early embryogenesis, prior to the implantation stage. This result shows that Eg5 is essential during early mouse development and cannot be compensated by another molecular motor.  相似文献   

7.
8.
LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp−/− females. Fertility of Lpp−/− males was proven to be normal, however, females from Lpp−/− × Lpp−/− crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp−/− mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp−/− mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.  相似文献   

9.
Neurochondrin/norbin is a cytoplasmic protein involved in dendrite outgrowth. The expression of the gene has been restricted to neural, bone, and chondral tissues. To identify the functions of the gene in vivo, we have generated mice with a disrupted mutation in the neurochondrin/norbin gene. Histological analysis of heterozygous mutant mice indicates the possibility of specific functions of neurochondrin/norbin in chondrocyte differentiation. We defined the expression patterns of neurochondrin/norbin-lacZ fusion protein in the central nervous system. In the developing olfactory bulb, beta-galactosidase activity was detected in the mantle layer at 12.5 dpc and the strongest activity was detected in the presumptive mitral or tufted cell layer at 15.5 dpc. beta-Galactosidase activity was also detected in the lateral choroid plexus. In homozygous (-/-) mutant mice, the disruption of the neurochondrin/norbin gene leads to early embryonic death between 3.5 and 6.5 dpc. This result indicates that neurochondrin/norbin gene function is essential for the early embryogenesis.  相似文献   

10.
Mutations in the cytosolic enzyme phosphomannomutase 2 (PMM2), which catalyzes the conversion of mannose-6-phosphate to mannose-1-phosphate, cause the most common form of congenital disorders of glycosylation, termed CDG-Ia. It is an inherited multisystemic disease with severe neurological impairment. To study the pathophysiology of CDG-Ia and to investigate possible therapeutic approaches, we generated a mouse model for CDG-Ia by targeted disruption of the Pmm2 gene. Heterozygous mutant mice appeared normal in development, gross anatomy, and fertility. In contrast, embryos homozygous for the Pmm2-null allele were recovered in embryonic development at days 2.5 to 3.5. These results indicate that Pmm2 is essential for early development of mice. Mating experiments of heterozygous mice with wild-type mice could further show that transmission of the female Pmm2-null allele is impaired.  相似文献   

11.
D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of L-serine biosynthesis in the phosphorylated pathway. To determine the physiological importance of Phgdh-dependent L-serine biosynthesis in vivo, we generated Phgdh-deficient mice using targeted gene disruption in embryonic stem cells. The absence of Phgdh led to a drastic reduction of L-serine metabolites such as phosphatidyl-L-serine and sphingolipids. Phgdh null embryos have small bodies with abnormalities in selected tissues and died after days post-coitum 13.5. Striking abnormalities were evident in the central nervous system in which the Phgdh null mutation culminated in hypoplasia of the telencephalon, diencephalon, and mesencephalon; in particular, the olfactory bulbs, ganglionic eminence, and cerebellum appeared as indistinct structures. These observations demonstrate that the Phgdh-dependent phosphorylated pathway is essential for normal embryonic development, especially for brain morphogenesis.  相似文献   

12.
Targeted disruption of the insulin receptor gene (Insr) in the mouse was achieved using the homologous recombination approach. Insr+/- mice were normal as shown by glucose tolerance tests. Normal Insr-/- pups were born at expected rates, indicating that Insr can be dispensable for intrauterine development, growth and metabolism. However, they rapidly developed diabetic ketoacidosis accompanied by a marked post-natal growth retardation (up to 30-40% of littermate size), skeletal muscle hypotrophy and fatty infiltration of the liver and they died within 7 days after birth. Total absence of the insulin receptor (IR), demonstrated in the homozygous mutant mice, also resulted in other metabolic disorders: plasma triglyceride level could increase 6-fold and hepatic glycogen content could be five times less as compared with normal littermates. The very pronounced hyperglycemia in Insr-/- mice could result in an increased plasma insulin level of up to approximately 300 microU/ml, as compared with approximately 25 microU/ml for normal littermates. However, this plasma level was still unexpectedly low when compared with human infants with leprechaunism, who lack IR but who could have extremely high insulinemia (up to > 4000 microU/ml). The pathogenesis resulting from a null mutation in Insr is discussed.  相似文献   

13.
Inducible 6-phosphofructo-2-kinase (iPFK-2; PFKFB3) produces fructose-2,6-bisphosphate (F2,6BP), which is a potent allosteric activator of 6-phosphofructo-1-kinase (PFK-1), the rate-limiting step in glycolysis. iPFK-2 functions as an activator of anaerobic glycolysis within the hypoxic microenvironment of growing tumors. The early embryo is challenged similarly since the process of vasculogenesis does not begin until after embryonic day 7. We hypothesized that iPFK-2 expression is essential for the survival of the growing embryo. First, we cloned the mouse homolog of iPFK2 and found that it is abundantly expressed in cortical neurons, epithelial cells, and secretory cells of the choroid plexus, pancreas, and adrenal gland of the adult mouse. Using gene targeting, we then disrupted exons 3-7 of the mouse iPFK2 gene, which encode the substrate binding site. No full-term homozygous iPFK-2(-/-) progeny were produced from 11 F7 iPFK-2(+/-) crosses and no homozygous iPFK-2(-/-) embryos were detected after 8 days of embryogenesis.  相似文献   

14.
15.
16.
The highly conserved AAA ATPase p97 (VCP/CDC48) has well-established roles in cell cycle progression, proteasome degradation and membrane dynamics. Gene disruption in Saccromyces cerevisiae, Drosophila melanogaster and Trypanosoma brucei demonstrated that p97 is essential in unicellular and multicellular organisms. To explore the requirement for p97 in mammalian cell function and embryogenesis, we disrupted the p97 locus by gene targeting. Heterozygous p97+/- mice were indistinguishable from their wild-type littermates, whereas homozygous mutants did not survive to birth and died at a peri-implantation stage. These results show that p97 is an essential gene for early mouse development.  相似文献   

17.
E Li  T H Bestor  R Jaenisch 《Cell》1992,69(6):915-926
Gene targeting in embryonic stem (ES) cells has been used to mutate the murine DNA methyltransferase gene. ES cell lines homozygous for the mutation were generated by consecutive targeting of both wild-type alleles; the mutant cells were viable and showed no obvious abnormalities with respect to growth rate or morphology, and had only trace levels of DNA methyltransferase activity. A quantitative end-labeling assay showed that the level of m5C in the DNA of homozygous mutant cells was about one-third that of wild-type cells, and Southern blot analysis after cleavage of the DNA with a methylation-sensitive restriction endonuclease revealed substantial demethylation of endogenous retroviral DNA. The mutation was introduced into the germline of mice and found to cause a recessive lethal phenotype. Homozygous embryos were stunted, delayed in development, and did not survive past mid-gestation. The DNA of homozygous embryos showed a reduction of the level of m5C similar to that of homozygous ES cells. These results indicate that while a 3-fold reduction in levels of genomic m5C has no detectable effect on the viability or proliferation of ES cells in culture, a similar reduction of DNA methylation in embryos causes abnormal development and embryonic lethality.  相似文献   

18.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive human disease whose clinical features include growth retardation, immunodeficiency, and increased susceptibility to lymphoid malignancies. Cells from NBS patients exhibit gamma-irradiation sensitivity, S-phase checkpoint defects, and genomic instability. Recently, it was demonstrated that this chromosomal breakage syndrome is caused by mutations in the NBS1 gene that result in a total loss of full-length NBS1 expression. Here we report that in contrast to the viability of NBS patients, targeted inactivation of NBS1 in mice leads to early embryonic lethality in utero and is associated with poorly developed embryonic and extraembryonic tissues. Mutant blastocysts showed greatly diminished expansion of the inner cell mass in culture, and this finding suggests that NBS1 mediates essential functions during proliferation in the absence of externally induced damage. Together, our results indicate that the complex phenotypes observed in NBS patients and cell lines may not result from a complete inactivation of NBS1 but may instead result from hypomorphic truncation mutations compatible with cell viability.  相似文献   

19.
The transforming growth factor-beta (TGF-beta) superfamily consists of a group of secreted signaling molecules that perform important roles in the regulation of cell growth and differentiation. TGF-beta activated kinase-1 binding protein-1 (TAB1) was identified as a molecule that activates TGF-beta activated kinase-1 (TAK1). Recent studies have revealed that the TAB1-TAK1 interaction plays an important role in signal transduction in vitro, but little is known about the role of these molecules in vivo. To investigate the role of TAB1 during development, we cloned the murine Tab1 gene and disrupted it by homologous recombination. Homozygous Tab1 mutant mice died, exhibiting a bloated appearance with extensive edema and hemorrhage at the late stages of gestation. By histological examinations, it was revealed that mutant embryos exhibited cardiovascular and lung dysmorphogenesis. Tab1 mutant embryonic fibroblast cells displayed drastically reduced TAK1 kinase activities and decreased sensitivity to TGF-beta stimulation. These results indicate a possibility that TAB1 plays an important role in mammalian embryogenesis and is required for TAK1 activation in TGF-beta signaling.  相似文献   

20.
Checkpoints of DNA integrity are conserved throughout evolution, as are the kinases ATM (Ataxia Telangiectasia mutated) and ATR (Ataxia- and Rad-related), which are related to phosphatidylinositol (PI) 3-kinase [1] [2] [3]. The ATM gene is not essential, but mutations lead to ataxia telangiectasia (AT), a pleiotropic disorder characterised by radiation sensitivity and cellular checkpoint defects in response to ionising radiation [4] [5] [6]. The ATR gene has not been associated with human syndromes and, structurally, is more closely related to the canonical yeast checkpoint genes rad3(Sp) and MEC1(Sc) [7] [8]. ATR has been implicated in the response to ultraviolet (UV) radiation and blocks to DNA synthesis [8] [9] [10] [11], and may phosphorylate p53 [12] [13], suggesting that ATM and ATR may have similar and, perhaps, complementary roles in cell-cycle control after DNA damage. Here, we report that targeted inactivation of ATR in mice by disruption of the kinase domain leads to early embryonic lethality before embryonic day 8.5 (E8.5). Heterozygous mice were fertile and had no aberrant phenotype, despite a lower ATR mRNA level. No increase was observed in the sensitivity of ATR(+/-) embryonic stem (ES) cells to a variety of DNA-damaging agents. Attempts to target the remaining wild-type ATR allele in heterozygous ATR(+/-) ES cells failed, supporting the idea that loss of both alleles of the ATR gene, even at the ES-cell level, is lethal. Thus, in contrast to the closely related checkpoint gene ATM, ATR has an essential function in early mammalian development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号