首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The carboxy-terminal residues of several peroxisomal proteins were shown to act as a peroxisomal targetting signal. This study was conducted to test whether the C-terminus of glycolate oxidase, a key enzyme in the glycolate metabolism pathway, is functioning as a targetting signal that directs proteins into plant leaf peroxisomes. A chimeric gene coding for a fusion protein composed of the C-terminal-truncated beta-glucuronidase, a synthetic linker of four amino acids and the last six C-terminal amino acids of glycolate oxidase, was constructed. Transformation of tobacco plants with the chimeric gene resulted in expression of beta-glucuronidase enzymic activity. About 50% of the transgenic beta-glucuronidase activity was localized to the peroxisomes. The results indicate that the six C-terminal amino acid residues of glycolate oxidase act as a targetting signal that is recognized by leaf peroxisomes.  相似文献   

2.
酵母UFD1基因编码的泛素融合降解蛋白是泛素依赖性降解系统或泛素融合降解途径中的一个关键因子.利用RT-PCR技术在小麦(Triticum aestivum L.)中分离到一个UFD1类似基因.该基因的编码区长948 bp,编码长315个氨基酸的多肽,其氨基酸序列与GenBank中登录的一个拟南芥UFD1类似蛋白有74%的同源性.在多肽链的N-端具有在真核生物中高度保守的UFD1结构域.我们将该基因定位在小麦的第六染色体群并将其命名为TUFD1.South-ern杂交和数据库搜索表明植物的UFD1基因是单拷贝或低拷贝的.无论是在单子叶中还是在双子叶植物中,UFD1蛋白都高度同源.除了N端UFD1结构域外,该类蛋白还有3个高度保守的C端结构域.TUFD1基因在小麦幼苗的根、茎、胚芽鞘、叶片以及幼穗和腊熟期子粒中呈组成性表达.  相似文献   

3.
小麦泛素融合降解蛋白基因的克隆及特征分析   总被引:2,自引:0,他引:2  
酵母UFD1基因编码的泛素融合降解蛋白是泛素依赖性降解系统或泛素融合降解途径中的一个关键因子。利用RT-PCR技术在小麦(Triticum aestivum L.)中分离到一个UFD1类似基因。该基因的编码区长948 bp,编码长315个氨基酸的多肽,其氨基酸序列与GenBank中登录的一个拟南芥UFD1类似蛋白有74%的同源性。在多肽链的N-端具有在真核生物中高度保守的UFD1结构域。我们将该基因定位在小麦的第六染色体群并将其命名为了UFD1。Southern杂交和数据库搜索表明植物的UFD1基因是单拷贝或低拷贝的。无论是在单子叶中还是在双子叶植物中,UFD1蛋白都高度同源。除了N端UFD1结构域外,该类蛋白还有3个高度保守的C端结构域。TUFD1基因在小麦幼苗的根、茎、胚芽鞘、叶片以及幼穗和腊熟期子粒中呈组成性表达。  相似文献   

4.
Violaxanthin de-epoxidase (VDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of violaxanthin to form antheraxanthin and zeaxanthin. VDE is predicted to be a lipocalin protein with a central barrel structure flanked by a cysteine-rich N-terminal domain and a glutamate-rich C-terminal domain. A full-length Arabidopsis thaliana (L.) Heynh. VDE and deletion mutants of the N- and C-terminal regions were expressed in Escherichia coli and tobacco (Nicotiana tabacum L. cv. Xanthi) plants. High expression of VDE in E. coli was achieved after adding the argU gene that encodes the E. coli arginine AGA tRNA. However, the specific activity of VDE expressed in E. coli was low, possibly due to incorrect folding. Removal of just 4 amino acids from the N-terminal region abolished all VDE activity whereas 71 C-terminal amino acids could be removed without affecting activity. The difficulties with expression in E. coli were overcome by expressing the Arabidopsis VDE in tobacco. The transformed tobacco exhibited a 13- to 19-fold increase in VDE specific activity, indicating correct protein folding. These plants also demonstrated an increase in the initial rate of nonphotochemical quenching consistent with an increased initial rate of de-epoxidation. Deletion mutations of the C-terminal region suggest that this region is important for binding of VDE to the thylakoid membrane. Accordingly, in vitro lipid-micelle binding experiments identified a region of 12 amino acids that is potentially part of a membrane-binding domain. The transformed tobacco plants are the first reported example of plants with an increased level of VDE activity.  相似文献   

5.
Accumulation of zeins, the endosperm storage proteins of maize, in a heterologous plant expression system was attempted. Plants of Nicotiana tabacum and Lotus corniculatus were transformed by Agrobacterium with binary vectors harbouring genes that code for γ-zein and β-zein, two zeins rich in sulphur amino acids. Adding the ER retention signal KDEL to the C-terminal domain modified the zein polypeptides. Significant levels of γ-zein:KDEL and β-zein:KDEL were detected in primary transformants of tobacco. Moreover, the two zeins colocalized in leaf protein bodies of γ-/β-zein:KDEL plants derived from a cross between two primary transformants. Coexpression of γ-zein:KDEL and β-zein:KDEL could be a useful strategy to obtain genotypes of forage legumes which are able to accumulate sulphur amino acids to high levels. As a first step, L. corniculatus plants expressing γ-zein:KDEL in the leaves were obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
In plants as well as in animals beta1, 2N-acetylglucosaminyltransferase I (GlcNAc-TI) is a Golgi resident enzyme that catalyzes an essential step in the biosynthetic pathway leading from oligomannosidic N-glycans to complex or hybrid type N-linked oligosaccharides. Employing degenerated primers deduced from known GlcNAc-TI genes from animals, we were able to identify the cDNA coding for GlcNAc-TI from a Nicotiana tabacum cDNA library. The complete nucleotide sequence revealed a 1338 base pair open reading frame that codes for a polypeptide of 446 amino acids. Comparison of the deduced amino acid sequence with that of already known GlcNAc-TI polypeptides revealed no similarity of the tobacco clone within the putative cytoplasmatic, transmembrane, and stem regions. However, 40% sequence similarity was found within the putative C-terminal catalytic domain containing conserved single amino acids and peptide motifs. The predicted domain structure of the tobacco polypeptide is typical for type II transmembrane proteins and comparable to known GlcNAc-TI from animal species. In order to confirm enzyme activity a truncated form of the protein containing the putative catalytic domain was expressed using a baculovirus/insect cell system. Using pyridylaminated Man(5)- or Man(3)GlcNAc(2)as acceptor substrates and HPLC analysis of the products GlcNAc-TI activity was shown. This demonstrates that the C-terminal region of the protein comprises the catalytic domain. Expression of GlcNAc-TI mRNA in tobacco leaves was detected using RT-PCR. Southern blot analysis gave two hybridization signals of the gene in the amphidiploid genomes of the two investigated species N. tabacum and N.benthamiana.  相似文献   

7.
We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8+ T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valine or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8+ T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8+ T cells.  相似文献   

8.
A bipartite DNA-binding domain in yeast Reb1p.   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

9.
Abstract

A series of genes was generated from three interchangeable cassettes, each coding for a specific set of amino acids. The genes were inserted into two different fusion expression vectors and two direct expression vectors. The expression studies demonstrated that proteolytic stability of the proteins is affected by the N-terminal region of the protein.  相似文献   

10.
Overlapping cDNAs have been isolated containing all the coding sequences for Artemia salina protein GRP33, a glycine-rich protein (16.6 mol % glycine), with a molecular weight of 32,992. GRP33 is closely related to HD40, the major protein component of Artemia heterogeneous nuclear ribonucleoprotein particles, and shares certain characteristics with other RNA binding proteins. The C-terminal region (123 amino acids) contains 39 glycine residues. This region has multiple arginine residues flanked by glycines, resembling the glycine-dimethylarginine clusters present in other RNA binding proteins. Secondary structure predictions for the protein reveal two distinct domains: a hydrophilic C-terminal domain with an extended conformation and a larger N-terminal domain with a number of alpha-helices and beta-sheets.  相似文献   

11.
Using differential screening, a murine cDNA, termed X16, was isolated corresponding to an mRNA which is more strongly expressed in pre-B cell lines relative to mature B-cell lines. The complete coding sequence of the mRNA predicts a 19kD protein with two domains connected by a proline-rich spacer. The N-terminal domain of about 90 amino acids encodes an RNA binding motif including the ribonucleoprotein consensus octapeptide found in one class of RNA-binding proteins and highly conserved from yeast to man. Within the very basic C-terminal domain of about 60 amino acids, several copies of two different peptides are found which are also present in several proteins which bind DNA or RNA. The expression of X16 is not limited to the lymphoid lineage. In adult mice, although the strongest expression was seen in thymus, mRNA was also found in testis, brain, spleen, and very low in heart. X16 mRNA was not detected in liver and kidney. In tissue culture, the expression of X16 mRNA can be induced by serum. The conserved protein motifs and expression pattern suggest that X16 could be involved in RNA processing correlating with cellular proliferation.  相似文献   

12.
Ubiquitin (Ub) is regarded as a stress protein involved in many stress responses. In this paper, sense and antisense transgenic tobacco plants, as well as the wild type and vector control, were used to study the role of Ub in salt tolerance of plants. In sense Ta-Ub2 transgenic tobacco plants, there was higher expression of Ub protein conjugates than in the wild type and vector control, but the reverse trend was observed in antisense Nt-Ub1 transgenic plants. The germination rate of tobacco seed, growth status and photosynthesis of the tobacco plants suggested that over-expressing Ub promoted the growth of transgenic tobacco plants and enhanced their salt tolerance, but the opposite effect was seen in plants with repressed Ub expression. Changes in antioxidant capacity may be one of the mechanisms underlying Ub-regulated salt tolerance. Furthermore, improved tolerance to a combination of stresses was also observed in the sense transgenic tobacco plants. These findings imply that Ub is involved in the tolerance of plants to abiotic stress.  相似文献   

13.
Protein phosphatases regulated by calmodulin (CaM) mediate the action of intracellular Ca2+ and modulate functions of various target proteins by dephosphorylation. In plants, however, the role of Ca2+ in the regulation of protein dephosphorylation is not well understood due to a lack of information on characteristics of CaM-regulated protein phosphatases. Screening of a cDNA library of the moss Physcomitrella patens by using 35S-labeled calmodulin as a ligand resulted in identification of a gene, PCaMPP, that encodes a protein serine/threonine phosphatase with 373 amino acids. PCaMPP had a catalytic domain with sequence similarity to type 2C protein phosphatases (PP2Cs) with six conserved metal-associating amino acid residues and also had an extra C-terminal domain. Recombinant GST fusion proteins of PCaMPP exhibited Mn2+-dependent phosphatase activity, and the activity was inhibited by pyrophosphate and 1 mm Ca2+ but not by okadaic acid, orthovanadate, or beta-glycerophosphate. Furthermore, the PCaMPP activity was increased 1.7-fold by addition of CaM at nanomolar concentrations. CaM binding assays using deletion proteins and a synthetic peptide revealed that the CaM-binding region resides within the basic amphiphilic amino acid region 324-346 in the C-terminal domain. The CaM-binding region had sequence similarity to amino acids in one of three alpha-helices in the C-terminal domain of human PP2Calpha, suggesting a novel role of the C-terminal domains for the phosphatase activity. These results provide the first evidence showing possible regulation of PP2C-related phosphatases by Ca2+/CaM in plants. Genes similar to PCaMPP were found in genomes of various higher plant species, suggesting that PCaMPP-type protein phosphatases are conserved in land plants.  相似文献   

14.
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).  相似文献   

15.
16.
Trichosanthin (TCS) is an antiviral plant defense protein, classified as a type-I ribosome-inactivating protein, found in the root tuber and leaves of the medicinal plant Trichosanthes kirilowii. It is processed from a larger precursor protein, containing a 23 amino acid amino (N)-terminal sequence (pre sequence) and a 19 amino acid carboxy (C)-terminal extension (pro sequence). Various constructs of the TCS gene were expressed in transgenic tobacco plants to determine the effects of the amino- and carboxy-coding gene sequences on TCS expression and host toxicity in plants. The maximum TCS expression levels of 2.7% of total soluble protein (0.05% of total dry weight) were obtained in transgenic tobacco plants carrying the complete prepro-TCS gene sequence under the Cauliflower mosaic virus 35S RNA promoter. The N-terminal sequence matched the native TCS sequence indicating that the T. kirilowii signal sequence was properly processed in tobacco and the protein translation inhibitory activity of purified rTCS was similar to native TCS. One hundred-fold lower expression levels and phenotypic aberrations were evident in plants expressing the gene constructs without the C-terminal coding sequence. Transgenic tobacco plants expressing recombinant TCS exhibited delayed symptoms of systemic infection following exposure to Cucumber mosaic virus and Tobacco mosaic virus (TMV). Local lesion assays using extracts from the infected transgenic plants indicated reduced levels of TMV compared with nontransgenic controls.  相似文献   

17.
A modular series of versatile expression vectors is described for improved affinity purification of recombinant fusion proteins. Special features of these vectors include (i) serial affinity tags (hexahistidine-GST) to yield extremely pure protein even with very low expression rates, (ii) highly efficient proteolytic cleavage of affinity tags under a variety of conditions by hexahistidine-tagged tobacco etch virus (TEV) protease, (iii) PCR cloning design that results in a product of proteolytic cleavage with only one (a single glycine) or two (gly-ala) amino acids at the N-terminus of the protein, and (iv) expression in either Escherichia coli or Saccharomyces cerevisiae. In addition, singly hexahistidine-tagged proteins can be produced for purification under denaturing conditions and some vectors allow addition of five amino acid kinase recognition sites for easy radiolabeling of proteins. To illustrate the use of these vectors, all regulatory components of the yeast GAL regulon, rather than abundant highly soluble proteins, were produced and purified under native or denaturing conditions, and their biological activity was confirmed.  相似文献   

18.
The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5'-to-3' helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first approximately 310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIDelta252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIDelta252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIDelta252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.  相似文献   

19.
A ca. 20-kilobase (kb) region (hrp) that controls the interaction of Pseudomonas syringae pv. phaseolicola with its host (pathogenicity) and nonhost plants (hypersensitive reaction) was previously cloned and partially characterized. In this study we defined the limits and determined the nucleotide sequence of a hrp locus (hrpS), located near the right end of the hrp cluster. The largest open reading frame (ORF302) in hrpS has a coding capacity for a 302-amino-acid polypeptide. The predicted amino acid sequence of the translation product of ORF302 (HrpS) shows significant similarity to several procaryotic regulatory proteins, including the NtrC, NifA, and DctD proteins of Rhizobium spp., the NtrC and NifA proteins of Klebsiella pneumoniae, and the TyrR protein of Escherichia coli. These proteins regulate diverse operons involved in nitrogen fixation, transport and metabolism of amino acids, and transport of C-4 dicarboxylic acids. The HrpS protein appears to be the shortest naturally occurring member of this family of proteins, corresponding for the most part to the highly conserved central domain of these proteins, which contains a putative ATP-binding site. A C-terminal segment analogous to the less-well-conserved domain, involved in DNA binding of NtrC and NifA, is also present in HrpS. These similarities suggest that HrpS is a regulatory protein. In line with this prediction is the finding that a functional hrpS gene is necessary for the activation of another hrp locus during the plant-bacterium interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号