首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transaminase, amylase and protease activities were comparedin seedlings of normal and Opaque-2 (o2) maize. Transaminaseactivity, greater in normal maize, was highest in the scutellumfrom which it decreased rapidly in activity from day 2 afterimbibition; only low activity was observed in endosperm andaxis tissue. Amylolytic activity, optimal around pH 5, was greater in normalmaize at all stages of endosperm degradation. Activity whichwas low on day 2, rose to a peak on day 6 and declined afterwards.The level of free sugars in the endosperm of normal was higherthan in o2 maize, and in both varieties was highly correlatedwith amylolysis. Protease activity, optimal at pH 3.6, was also greater in normalendosperms and increased up to day 6 and activity was maintainedat this level until around day 14. Although the activity ofall three enzyme systems examined was greater in normal maizethere were no apparent differences in the overall growth ofnormal and o2 seedlings during this period. Zea mays L, maize, corn, endosperm, enzyme activity, transaminase, amylase, protease  相似文献   

2.
The development of amylase activity in extracts from de-embryonated and GA3-treated de-embryonated maize kernels (Zea mays L.) was determined during a 10-day incubation period. The increase in activity was compared with activity extracted from endosperms dissected from germinating whole kernels. Chromatographic analysis of reaction products as well as physicochemical characterization demonstrated that the activities from GA3-treated and nontreated tissue were comparable and that part of the activity was attributable to α-amylase.  相似文献   

3.
The characteristics of alpha amylase purification on a column of cycloheptaamylose-substituted, epoxy-activated Sepharose 6B were investigated. The enzyme was recovered in high yield from crude triticale and wheat extracts. Enzyme activity assessed after elution from the column was 132% of that measured prior to chromatography. There was no evidence of beta amylase isozymes in the purified alpha amylase. Neither barley beta amylase nor sweet-potato beta amylase was retained by the column. Cycloheptaamylose did not inhibit triticale or wheat alpha amylase activity, but did inhibit barley beta amylase activity, yielding a K1 of 4.5mm. Equilibriumdialysis experiments showed that alpha amylase did interact with cycloheptaamylose. The dissociation constant for the enzyme-ligand was 19μm. It was concluded that cycloheptaamylose bound at a non-catalytic site on the alpha amylase molecule.  相似文献   

4.
Chromatography of maize kernel extracts on DEAE-cellulose resolves two fractions of starch synthase activity, one of which (starch synthase 1) is capable of synthesizing α-glucan in the absence of exogenous primer and the presence of 0.5 m citrate (J. L. Ozbun, J. S. Hawker, and J. Preiss, Plant Physiol. (1971) 48, 765–769). This starch synthase has been purified 200-fold from developing kernels of normal maize, and shown to have no detectable activities of branching enzyme, amylase, pullulanase, phosphorylase, and D enzyme. The preparation, however, was not electrophoretically homogeneous. This preparation had a Km value of 0.033 mm for ADPglucose in the presence of 0.5 m citrate. The reaction in the presence of citrate was stimulated 10-fold by the addition of excess purified branching enzyme. This stimulation is higher than those reported previously (C. D. Boyer and J. Preiss, Plant Physiol. (1979) 64, 1039–1042) but is consistent with the predicted effects of removal of amylase activity. The effects of salts other than citrate on activity in the absence of exogenous primer were small, but the stimulation could be restored by the addition of excess purified branching enzyme. Citrate increased the affinity of the enzyme for the endogenous primer present to such a level that no effect of exogenous primer on reaction rate could be observed in the presence of 0.5 m citrate. Analysis of the glucan/iodine complex and the enzymatic breakdown products patterns from the products of the starch synthase reaction indicates a high degree of linearity. The results obtained are discussed in relation to the biosynthesis of starch in vivo.  相似文献   

5.

Key message

Heterologous expression of amylopullulanase in maize seeds leads to partial starch degradation into fermentable sugars, which enhances direct bioethanol production from maize grain.

Abstract

Utilization of maize in bioethanol industry in the United States reached ±13.3 billion gallons in 2012, most of which was derived from maize grain. Starch hydrolysis for bioethanol industry requires the addition of thermostable alpha amylase and amyloglucosidase (AMG) enzymes to break down the α-1,4 and α-1,6 glucosidic bonds of starch that limits the cost effectiveness of the process on an industrial scale due to its high cost. Transgenic plants expressing a thermostable starch-degrading enzyme can overcome this problem by omitting the addition of exogenous enzymes during the starch hydrolysis process. In this study, we generated transgenic maize plants expressing an amylopullulanase (APU) enzyme from the bacterium Thermoanaerobacter thermohydrosulfuricus. A truncated version of the dual functional APU (TrAPU) that possesses both alpha amylase and pullulanase activities was produced in maize endosperm tissue using a seed-specific promoter of 27-kD gamma zein. A number of analyses were performed at 85 °C, a temperature typically used for starch processing. Firstly, enzymatic assay and thin layer chromatography analysis showed direct starch hydrolysis into glucose. In addition, scanning electron microscopy illustrated porous and broken granules, suggesting starch autohydrolysis. Finally, bioethanol assay demonstrated that a 40.2 ± 2.63 % (14.7 ± 0.90 g ethanol per 100 g seed) maize starch to ethanol conversion was achieved from the TrAPU seeds. Conversion efficiency was improved to reach 90.5 % (33.1 ± 0.66 g ethanol per 100 g seed) when commercial amyloglucosidase was added after direct hydrolysis of TrAPU maize seeds. Our results provide evidence that enzymes for starch hydrolysis can be produced in maize seeds to enhance bioethanol production.  相似文献   

6.
Fumonisin B1 toxin is produced by the fungusFusarium moniliforme Sheldon, which is systemic to maize (Zea mays L.) and maize seeds. The effects of zero to 100 parts per million fumonisin B1 on the germination process of maize seeds was determined. The presence of fumonisin had no effect on percent seed germination, but fumonisin inhibited radicle elongation by up to 75% after 48 hours of imbibition. An analysis of amylase secretion in the maize endosperm indicated that fumonisins inhibited amylase production in the germinating seed. Isoelectric focusing of endosperm extracts indicated that secretion of the low pI class of amylases was affected more that other amylase isozymes. The results suggested that the presence of high levels of fumonisin in maize seed may have deleterious effects on seedling emergence.  相似文献   

7.
8.

Background

The digestion of dietary starch in humans is initiated by salivary α-amylase, an endo-enzyme that hydrolyzes starch into maltose, maltotriose and larger oligosaccharides. Salivary amylase accounts for 40 to 50% of protein in human saliva and rapidly alters the physical properties of starch. Importantly, the quantity and enzymatic activity of salivary amylase show significant individual variation. However, linking variation in salivary amylase levels with the oral perception of starch has proven difficult. Furthermore, the relationship between copy number variations (CNVs) in the AMY1 gene, which influence salivary amylase levels, and starch viscosity perception has not been explored.

Principal Findings

Here we demonstrate that saliva containing high levels of amylase has sufficient activity to rapidly hydrolyze a viscous starch solution in vitro. Furthermore, we show with time-intensity ratings, which track the digestion of starch during oral manipulation, that individuals with high amylase levels report faster and more significant decreases in perceived starch viscosity than people with low salivary amylase levels. Finally, we demonstrate that AMY1 CNVs predict an individual''s amount and activity of salivary amylase and thereby, ultimately determine their perceived rate of oral starch viscosity thinning.

Conclusions

By linking genetic variation and its consequent salivary enzymatic differences to the perceptual sequellae of these variations, we show that AMY1 copy number relates to salivary amylase concentration and enzymatic activity level, which, in turn, account for individual variation in the oral perception of starch viscosity. The profound individual differences in salivary amylase levels and salivary activity may contribute significantly to individual differences in dietary starch intake and, consequently, to overall nutritional status.  相似文献   

9.
The halophilic bacterial strain Chromohalobacter sp. TVSP 101 was shown to produce extracellular, halotolerant, alkali-stable and moderately thermophilic α-amylase activity. The culture conditions for higher amylase production were optimized with respect to NaCl, pH, temperature and substrates. Maximum amylase production was achieved in a medium containing 20% NaCl or 15% KCl at pH 9.0 and 37 °C in the presence of 0.5% rice flour and tryptone. Addition of 50 mM CaCl2 to the medium increased amylase production by 29%. Two kinds of amylase activity, designated amylase I and amylase II, were purified from culture filtrates to homogeneity with molecular masses of 72 and 62 kDa, respectively. Both enzymes had maximal activity at pH 9.0 and 65 °C in the presence of 0–20% (w/v) NaCl but amylase I was much more stable in the absence of NaCl than amylase II. The enzymes efficiently hydrolyzed carbohydrates to yield maltotetraose, maltotriose, maltose, and glucose as the end products.  相似文献   

10.
Methods were developed and extended to enable the incubation of isolated barley (Hordeum vulgare cv. Himalaya) aleurone layers under carefully controlled conditions for studies on effects of ethylene on amylase synthesis and release. When layers in medium containing gibberellic acid were exposed to ethylene, the synthesis and release of amylase were altered relative to layers maintained in an ethylene-free environment. These ethylene effects were detected at the smallest concentration used, 0.041 nl/ml, indicating a very low threshold value. During the initial 24 h, ethylene accelerated both the appearance of total amylase activity, and the release of this activity from the aleurone layers. On the other hand, ethylene reduced the total amount of amylase activity that was recovered from samples after 48 and 72 h.  相似文献   

11.
Fitness cost is usually associated with insecticide resistance and may be mitigated by increased energy accumulation and mobilization. Preliminary evidence in the maize weevil (Coleoptera: Curculionidae) suggested possible involvement of amylases in such phenomenon. Therefore, α-amylases were purified from an insecticide-susceptible and two insecticide-resistant strains (one with fitness cost [resistant cost strain], and the other without it [resistant no-cost strain]). The main α-amylase of each strain was purified by glycogen precipitation and ion-exchange chromatography (≥70-fold purification, ≤19% yield). Single α-amylase bands with the same molecular mass (53.7 kDa) were revealed for each insect strain. Higher activity was obtained at 35-40 °C and at pH 5.0-7.0 for all of the strains. The α-amylase from the resistant no-cost strain exhibited higher activity towards starch and lower inhibition by acarbose and wheat amylase inhibitors. Opposite results were observed for the α-amylase from the resistant cost strain. Although the α-amylase from the resistant cost strain exhibited higher affinity to starch (i.e., lower Km), its Vmax-value was the lowest among the strains, particularly the resistant no-cost strain. Such results provide support for the hypothesis that enhanced α-amylase activity may be playing a major role in mitigating fitness costs associated with insecticide resistance.  相似文献   

12.
The objective of the present study was to isolate halotolerant bacteria from the sediment sample collected from Marakanam Solar Salterns, Tamil Nadu, India using NaCl supplemented media and screened for amylase production. Among the 22 isolates recovered, two strains that had immense potential were selected for amylase production and designated as P1 and P2. The phylogenetic analysis revealed that P1 and P2 have highest homology with Pontibacillus chungwhensis (99%) and Bacillus barbaricus (100%). Their amylase activity was optimized to obtain high yield under various temperature, pH and NaCl concentration. P1 and P2 strain showed respective, amylase activity maximum at 35 °C and 40 °C; pH 7.0 and 8.0; 1.5 M and 1.0 M NaCl concentration. Further under optimized conditions, the amylase activity of P1 strain (49.6 U mL?1) was higher than P2 strain. Therefore, the amylase enzyme isolated from P. chungwhensis P1 was immobilized in sodium alginate beads. Compared to the free enzyme form (49.6 U mL?1), the immobilized enzyme showed higher amylase activity as 90.3 U mL?1. The enzyme was further purified partially and the molecular mass was determined as 40 kDa by SDS–PAGE. Thus, high activity of amylase even under increased NaCl concentration would render immense benefits in food processing industries.  相似文献   

13.
Amylase distribution was studied in guinea pig pancreas microsomes fractionated by centrifuging, for 2 hr at 57,000 g in a linear 10 to 30% sucrose gradient, a resuspended high speed pellet obtained after treating microsomes with 0.04% deoxycholate (DOC).1 Amylase appeared in the following positions in the gradient: (a) a light region which contained ∼35% of total enzymic activity and which coincided with a monomeric ribosome peak; (b) a heavy region which contained ∼10% of enzymic activity in a sharp peak but which had very little accompanying OD260 absorption; (c) a pellet at the bottom of the centrifuge tube which contained ∼20% of the enzymic activity. After 5 to 20 min'' in vivo labeling with leucine-1-C14, radioactive amylase was solubilized from these three fractions by a combined DOC-spermine treatment and purified by precipitation with glycogen, according to Loyter and Schramm. In all cases, the amylase found in the pellet had five to ten times the specific activity (CPM/enzymic activity) of the amylase found in the light or heavy regions of the gradient. The specific radioactivity (CPM/mg protein) of the proteins or peptides not extracted by DOC-spermine was similar for all three fractions. Hypotonic treatment of the fractions solubilized ∼80% of the total amylase in the fraction from the heavy region of the gradient, but only ∼20% of the amylase in the monomer or pellet fraction. Electron microscope observation indicates that the monomer region of the gradient contained only ribosomes, that the heavy region of the gradient contained small vesicles with relatively few attached ribosomes, and that the pellet was composed mostly of intact or ruptured microsomes with ribosomes still attached to their membranes. It is concluded from the above, and from other evidence, that most of the amylase activity in the monomer region is due to old, adsorbed enzyme; in the heavy region mostly to enzyme already inside microsomal vesicles; and in the pellet to a mixture of newly synthesized and old amylase still attached to ribosomes. Furthermore, the ribosomes with nascent, finished protein still bound to them are more firmly attached to the membranes than are ribosomes devoid of nascent protein.  相似文献   

14.
The protease-sensitive release of α-amylase from rat pancreatic microsomes, incubated at 37°C, was inhibited by protease inhibitors which have been reported to inhibit signal peptidase activity. Protease inhibitors which did not affect signal peptidase activity also failed to inhibit amylase release from microsomes. Although the observed amylase release was in the opposite direction to enzyme secretion and involved fully-synthesised proteins, rather than nascent peptides, it is proposed that the enzyme release phenomenon reported from this laboratory (Pearce et al. (1978) Biochem. J. 176, 611–614) is related to the protein transporting mechanism involved in secretion.  相似文献   

15.
The time sequence analysis of the starch digestion pattern of the thin sectioned germinating rice (Oryza sativa L.) seed specimens using the starch film method showed that at the initial stage amylase activity was almost exclusively localized in the epithelium septum between the scutellum and endosperm. Starch breakdown in the endosperm tissues began afterward; amylase activity in the aleurone layers was detectable only after 2 days. Polyacrylamide gel electrofocusing (pH 4 to 6) revealed nearly the same zymogram patterns between endosperm and scutellum extracts, although additional amylase bands appeared in the endosperm extracts at later germination stages (4 to 6 days). These are presumably attributable to the newly synthesized enzyme molecules in the aleurone cells.  相似文献   

16.
Pollen collected from maize plants raised under 0, 80, 120 and160 mequiv 1–1 salinity were used to determine the activitiesof amylase and invertase after 0 and 45 min of incubation inthe liquid basal germination medium. Amylase activity was higherin the ungerminated pollen collected from 120 and 160 mequiv1–1 salinity while those pollen from lower salinity didnot show detectable amylase activity. However, 45 min afterincubation, the trend was reversed. Pollen collected from plantsraised under saline conditions showed increased invertase activitywhich further increased after 45 min of incubation in the basalgermination medium. The significance of changes in the activitiesof these hydrolytic enzymes in relation to pollen tube growthis discussed. Zea mays, salinity, pollen, amylase, invertase  相似文献   

17.
Pozol is an acid beverage obtained from the natural fermentation of nixtamal (heat- and alkali-treated maize) dough. The concentration of mono- and disaccharides from maize is reduced during nixtamalization, so that starch is the main carbohydrate available for lactic acid fermentation. In order to provide some basis to understand the role of amylolytic lactic acid bacteria (ALAB) in this fermented food, their diversity and physiological characteristics were determined. Forty amylolytic strains were characterized by phenotypic and molecular taxonomic methods. Four different biotypes were distinguished via ribotyping; Streptococcus bovis strains were found to be predominant. Streptococcus macedonicus, Lactococcus lactis, and Enterococcus sulfureus strains were also identified. S. bovis strain 25124 showed extremely low amylase yield relative to biomass (139 U g [cell dry weight]−1) and specific rate of amylase production (130.7 U g [cell dry weight]−1 h−1). In contrast, it showed a high specific growth rate (0.94 h−1) and an efficient energy conversion yield to bacterial cell biomass (0.31 g of biomass g of substrate−1). These would confer on the strain a competitive advantage and are the possible reasons for its dominance. Transient accumulation of maltooligosaccharides during fermentation could presumably serve as energy sources for nonamylolytic species in pozol fermentation. This would explain the observed diversity and the dominance of nonamylolytic lactic acid bacteria at the end of fermentation. These results are the first step to understanding the importance of ALAB during pozol fermentation.  相似文献   

18.

Background

Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168.

Results

The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#.

Conclusion

The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis. Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell factories.
  相似文献   

19.
Differences in amylase action pattern on amylopectin were demonstrated by the relation between the decrease in potassium iodide-iodine binding of waxy maize starch and the increase in reducing value during hydrolysis, as expressed by the RV80 value (i.e., the reducing value for a potassium iodide-iodine binding value of 80% of that of the starting material). In the initial stages of the hydrolysis, the ratio of the increase in the level of reducing polysaccharides to the increase in the total level of reducing sugars formed during amylolysis of amylopectin can be considered as a measure of the level of inner chain attack (LICA) in the overall hydrolysis of the amylopectin structure and correlated with the respective RV80 value. Bacillus amyloliquefaciens α-amylase and Aspergillus oryzae α-amylase, with the lowest RV80 and the highest LICA values, hydrolysed the inner chains of amylopectin to a greater extent than did porcine pancreatic α-amylase. In the initial stages of hydrolysis, Bacillus stearothermophilus maltogenic amylase, like the Bacillus cereus β-amylase, did not display any significant degree of internal hydrolysis of amylopectin, in line with the high RV80 and very low LICA values for these enzymes. However, at the later stages of hydrolysis, the maltogenic amylase probably exhibited a significant degree of internal hydrolysis of amylopectin, which itself seems to depend on temperature. The temperature dependence of the hydrolysis pattern of this enzyme is relevant for interpretation of its action as antifirming enzyme in bread-making applications.  相似文献   

20.
Preincubation of nitrate reductase (NR) extracted from wheat shoot tips with NADH in vitro, activated and stabilized activity at both O° and 25°. However, preincubation with potassium ferricyanide inactivated the NR in vitro. NADH also stabilized the NR activity in extracts from maize shoot tips. It was observed that NR from both wheat and maize was active at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号